P

Eight-Bit 80C51 Embedded Processors Advanced
1990 Data Book Micro
Devices

&

Advanced

Eight-Bit 80C51
Embedded Processors

© 1989 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics. The performance characteristics
listed in this document are guaranteed by specific tests, correlated testing, guard banding,

design and other practices common to the industry.
For specific testing details, contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Micro
Devices

Flashrite is a trademark of Advanced Micro Devices, Inc.

PC-DOS, IBM-PC, IBM PC-PS/2, IBM-XT and IBM PC-AT are registered trademarks of IBM Corporation.
Macintosh is a trademark licensed to Apple Computer Corporation.

Sun 3 Workstation is a registered trademark of Sun Microsystems Inc.

CP/M is a trademark of Digital Research.

EZ-PRO is a registered trademark of American Automation.

MetalCE and MicrolCE are trademarks of MetaLink Corporation.

MCS-51 is a registered trademark of Intel Corporation.

MicroVAX and VAX are registered trademarks and Ultrix is a trademark of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T Technologies Inc.

MS-DOS and CodeView are registered trademarks of Microsoft Corporation.

Unisite, LogicPak, UniPak and PROMIink are trademarks of Data I/O.

All 8051 instruction mnemonics are copyrighted by Intel Corporation 1980.

Note: Chapters 1 through 7 contain information reprinted with
permission from Intel Corporation.

Eight-Bit 80C51 Embedded Processors

Today Advanced Micro Devices offers you three families of compatible and upgradable CMOS products based on
the industry standard 8051 architecture. Our compatible growth path insures that the continuity of your software
investment is preserved, not obsoleted.

AMD’s microcontrollers increase the levels of performance and reliability of your systems. Our valued-added
features are helping set new standards in a variety of telecommunication and computation applications.

The breadth of AMD’s portfolio provides maximum flexibility for design and production needs. A variety of program
memory densities and fully compatible memory types (EPROM, ROM and ROM-less) are offered in each CMOS
family. For example, our EPROM versions greatly simplify prototyping, immediate production starts and rapid
code changes.

AMD’s extensive worldwide network of sales offices, representatives and distributors is available to provide addi-
tional technical support. Please call for assistance today.

Subodh Toprani
Director of Marketing
Embedded Processor Division

Eight-Bit 80C51 Embedded Processors

Preface

This databook provides complete information on the wide variety of 8-bit 8051 Family microcontrollers from
Advanced Micro Devices. AMD offers not only the best product, but also the necessary documentation and
support tools you require.

AMD offers more options on the industry-standard 8051 architecture. Two CMOS product families are now avail-
able: the 80C51 and the 80C521. Each family offers a variety of ROM densities and ROM types (on-chip mask
ROM, user programmable EPROM, or off-chip ROM). A long list of enhanced features is also available, including
Watchdog Timers, Dual Data Pointers, Software Reset, and Port Expansion.

A key to the success of the 8051 Family is the availability of efficient and highly flexible support tools. Excellent
emulators, compilers, and programmers are available from multiple sources to meet your requirements. A few of
these products are briefly described in Section Il. AMD also offers compatible EPROM versions of the 8051
Family to simplify prototyping, initial production, or to provide a tool for immediate program changes.

SECTION |

This section contains general information on the 8051 Family of devices and serves as a core that is useful to
designing with all of AMD’s microcontrollers. The terms “8051” or “8051 Family” refer to the entire line of 8051-
based microcontrollers, each executing an identical instruction set.

SECTION Il

This section focuses on specific products, and includes data sheets, device-specific application information and
software routines. The data sheets emphasize features unique to the device and do not generally repeat informa-
tion common to the entire 8051 Family.

Table of Contents

SECTION | 8051 Family Architectural Description
CHAPTER 1 8051 Family Overview

Members of the Family 1-1
80C51BH/80C31BH/87C51 1-2
80C52T2/80C32T2/87C52T2 1-2
80C521/80C321/87C521 1-2
80C541/87C541 1-3
80C324 1-3

Memory Organization in 8051 Family Devices 1-3
Logical Separation of Program and Data Memory 1-3
Program Memory 1-3
Data Memory 1-5

CHAPTER 2 8051 Family Architecture

Introduction 2-1

Memory Organization 2-2

Oscillator and Clock Circuit 2-3

CPU Timing 2-4

Port Structures and Operation 2-5

Accessing External Memory 2-8

Timer/Counters 2-10

Serial Interface 2-13

Interrupts 2-23

Single-Step Operation 2-26

Reset 2-26

Power-Saving Modes of Operation 2-27

More About the On-Chip Oscillator 2-28

Internal Timing 2-31

80C51BH Pin Descriptions 2-31

CHAPTER 3 Programmer’s Guide

Memory Organization 3-1
Program Memory 3-1
Data Memory 3-2
Direct and Indirect Address Area 3-4

Special Function Registers 3-6
Contents of SFRs After Power-On 3-7
SFR Memory Map 3-8
Program Status Word (PSW) 3-9
Power Control Register (PCON) 3-9
Interrupts 3-10
Interrupt Enable Register (IE) 3-10
Assigning Higher Priority Levels 3-11
Interrupt Priority Register (IP) 3-11
Timer/Counter Control Register (TCON) 3-12

Timer/Counter Mode Control Register (TMOD) 3-12

TABLE OF CONTENTS

(continued)

Timer Set-Up 3-13
Timer/Counter 0 3-13
Timer/Counter 1 3-13

Timer/Counter 2 Control Register (T2CON) 3-15
Timer/Counter 2 Set-Up 3-16

Serial Port Control Register (SCON) 3-17
Serial Port Set-Up 3-17

Generating Baud Rates 3-18

CHAPTER 4 Instruction Set

Program Status Word 4-1

Addressing Modes 41

Arithmetic Instructions 4-2

Logical Instructions 4-3

Data Transfers 4-4

Boolean Instructions 4-6

Jump Instructions 4-8

Instruction Set Summary 4-10

Instruction Definitions 4-14

CHAPTER 5 Software Routines

8051 Programming Techniques 5-1
Radix Conversion Routines 5-1
Multiple Precision Arithmetic 5-2
Table Look-Up Sequences 5-2
Saving CPU Status During Interrupts 5-4
Passing Parameters on the Stack 5-4
N-Way Branching 5-6
Computing Branch Destinations at Run Time 5-7
In-Line-Code Parameter-Passing 5-8

Peripheral Interfacing Techniques 5-9
1/0 Port Reconfiguration (First Approach) 5-9
/O Port Reconfiguration (Second Approach) 5-10
Simulating a Third Priority Level in Software 5-11
Software Delay Timing 5-11
Serial Port and Timer Mode Configuration 5-12
Simple Serial I/0O Drivers 5-12
Transmitting Serial Port Character Strings 5-13
Recognizing and Processing Special Cases 5-13
Buffering Serial Port Output Characters 5-14
Synchronizing Timer Overflows 5-15
Reading a Timer/Counter “On-the-Fly” 5-16

CHAPTER 6 8051 Family Boolean Processing Capabilities

Boolean Processor Operation 6-1

Boolean Processor Applications 6-11
Bit Permutation 6-12
Software Serial I/O 6-15
Combinatorial Logic Equations 6-18
Automotive Dashboard Functions 6-21

vi

TABLE OF CONTENTS
(continued)

SECTION Il 8051 Family Device Description
CHAPTER 7 80C51 Family
80C51BH/80C31BH/80C52T2/80C32T2 Data Sheet 7-1
87C51/87C52T2 Data Sheet 7-13
Designing with the 80C51BH Applications Note 7-27
CHAPTER 8 80C521 Family
80C521/80C321/80C541 Data Sheet 8-1
87C521/87C541 Data Sheet 8-22
Software Routines 8-37
Dual Data Pointer Routines 8-37
Block Move in External RAM 8-37
Higher Performance Interrupt Routines 8-39
Full Duplex Transmit/Receive Buffering 8-40
Tree Structure Manipulation 8-40
ROM Table Access 8-41
Creating an External Stack 8-41
Watchdog Timer Routines 8-42
WDT Enable, Clear, and Reset Cause 8-42
Power-Down Operation 8-43
Testing the Watchdog Timer 8-45
Using the Watchdog Timer as a Standard Timer 8-45
Software Reset Routines 8-47
Using Software Reset 8-47
Improving Reliability with Software Reset 8-48
CHAPTER9 80C324 CMOS Single-Chip Microcontroller
80C324 Data Sheet 9-1
CHAPTER 10 Third-Party Support Products
Vendor/Product Listings 10-1
Hewiett-Packard Deveiopment Sysiem i0-3
MetaLink Development System 10-8
American Automation Development System 10-13
Huntsville Microsystems Development System 10-14
Micro Computer Control 8051 C Compiler 10-15
Archimedes C-8051 Compiler 10-20
Data I/O Programmers 10-24
CHAPTER 11 Package Outlines
Plastic Dual-in-Line Package 11-1
Ceramic Hermetic Dual-in-Line Packages 11-2
Plastic Leaded Chip Carriers 11-3
Ceramic Leadless Chip Carriers 11-4

vii

Numerical Device Listing

80C31BH
80C32T2
80G321
80C324
80C51BH
80C52T2
80C521
80C541
87C51
87C521
87C52T72

87C541

NUMERICAL DEVICE LISTING

CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller

CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller

CMOS Single-Chip Microcontrolier

CMOS Single-Chip 8-Bit Microcontroller with
4K Bytes of EPROM

CMOS Single-Chip 8-Bit Microcontroller with
8K Bytes of EPROM

CMOS Single-Chip 8-Bit Microcontroller
with 8K Bytes of EPROM

CMOS Single-Chip 8-Bit Microcontroller with
16K Bytes of EPROM

7-1
7-1
8-1
9-1
7-1
7-1
8-1

8-1

7-13

8-22

7-13

8-22

viii

SECTION | Pu |
8051 Architectural Description

Section 1 presents “core” information applicable to all
members of the 8051 Microcontroller Family. in Chapter
1, each member is discussed briefly; an in-depth de-
scription of the family’s memory organization follows.
The information flows naturally into chapters on archi-

tecture, programming, the instruction set, software rou-
tines, and Boolean processing capabilities.

As AMD adds more devices to the 8051 Family, this
sectionwill continue to serve as aone-stop reference for
both hardware and software designers.

Overview
Boolean Processing Architecture
Capabilities
8051
Family
Software
Routines Programmer's
Guide

Instruction Set

CHAPTER 1

8051 Family Overview
Members of the Family

80C51BH/80C31BH/87C51
80C52T2/80C32T2/87C52T2
80C521/80C321/87C521
80C541/87C541

80C324

Memory Organization in 8051 Family Devices

Logical Separation of Program and Data Memory
Program Memory
Data Memory

1-1

1-2
1-2
1-2
1-3
1-3
1-3

1-3

1-5

CHAPTER 1

8051 Family Overview

1

MEMBERS OF THE FAMILY

The 8051 microcontroller family is based upon the architectural structure shown in Figure 1-1. The AMD 80C51
products are shown in Table 1-1.

FREQUENCY
REFERENCE

COUNTERS

B i -

INTERRUPTS

INTERRUPTS

64K BYTE BUS
EXPANSION),
CONTROL

PROGRAMMABLE /O

PROGRAMMABLE

SERIAL PORT

« FULL DUPLEX
UART

+ SYNCHRONOUS
SHIFT

Figure 1-1.

[— H _________

CONTROL

Architectural Structure of the 8051 Family

PARALLEL PORTS
ADDRESS DATA BUS
AND VO PINS

I
l |) v i
| |
|| osciLLaTor TWO 16-BIT !
i & ROM/EPROM RAM TIMEREVENT :
i TIMING COUNTERS |
i |
1
| l l AN !
[|
i |
| cPU <' '
! Y r i
: |
|
| d L < L
. \Z |
| |
! |
! |
! |
} |
i ER i
! |
! !
} I

SERIAL SERIAL
IN ourt

1-1

CHAPTER 1
8051 Family Overview

Table 1-1. AMD’s 80C51 Family Products

Internal Memory

Other
ROM EPROM RAM Timers Enhanced

Device (bytes) (bytes) (bytes) (16-bit) Features
80C31BH — —_ 128 2 —
80C51BH 4K —_ 128 2 —_
87Cs1 — 4K 128 2 —
80C32T2 _ _ 256 2 —_
80C52T2 8K —_ 256 2 —
87C52T2 —_ 8K 256 2 —_
80C321 — — 256 2 Yes
80C521 8K —_ 256 2 Yes
87C521 —_ 8K 256 2 Yes
80C541 16K — 256 2 Yes
87C541 —_ 16K 256 2 Yes
80C324 —_ —_— 256 2 Yes
80C325 —_ —_ 256 2 Yes
80C525 8K —_ 256 2 Yes

NMOS products are also available.

80C51BH/80C31BH/87C51

The 80C51BH is a CMOS version of the original NMOS
8051AH offering approximately 80% less power con-
sumption and faster operating speeds. It is fully software
compatible with the NMOS device and offers identical
features including:

* 8-bit CPU optimized for control applications
* 4K bytes of on-chip Program Memory

* 128 bytes of on-chip Data Memory

* Two 16-bit Timer/Counters

* Full duplex UART

* 5-source interrupt structure with two priority levels
* On-chip oscillator

* Boolean processor

* Bit-addressable RAM

* 64K Program Memory Space

* 64K Data Memory Space

The CMOS product will not always be fully pin-compat-
ible with the NMOS device. Further distinctions between
the CMOS and NMOS 8051 Family members may be
found in Chapter 7 (Designing with the 80C51BH).

In addition to power savings during normal operation, the
80C51BH offers idle and power-down modes. In idle
mode, the CPU is turned off while the RAM and other on-
chip peripherals continue to operate. Current draw is
typically 15% of the current draw when the device is fully
active. Inthe power-down mode, all on-chip activities are
suspended while the RAM holds its data. In this mode,
the device typically draws less than 10 pA.

The 80C31BH is identical to the 80C51BH except that it
contains no on-chip ROM. The 87C51 is the EPROM
version of the 80C51BH. The EPROM products are
especially useful for prototyping and immediate produc-
tion starts.

80C52T2/80C32T2/87C52T2

The 80C52T2 is identical to the 80C51BH except for the
amount of on-chip memory. The ROM was increased to
8K bytes and the RAM was increased to 256 bytes. The
80C52T2 has two 16-bit timers similar to the 80C51BH.

The “8052” architecture referred to in this manual is an
8051 with8K bytes of ROM, 256 bytes of RAM, and a third
timer. AMD does not produce an 8052 in either CMOS or
NMOS technologies. If the extra timer is not required the
80C52T2 can be used in 8052 applications.

The 80C32T2 is an identical ROM-less version of the
80C52T2. The 87C52T2 is an EPROM version pin-
compatible with the 80C52T2.

80C521/80C321/87C521

The 80C521 is an enhanced version of the 80C51. Its
additional features include the following:

* 8K bytes of on-chip ROM

* 256 bytes of on-chip RAM

* Programmable Watchdog Timer

¢ Dual Data Pointers

* Software Reset

1-2

CHAPTER 1
8051 Family Overview

The 80C521 is pin-compatible and functional-compatible
with the 80C51. The Programmable Watchdog Timer is
specially designed to be both flexible and dependabile. It
provides needed protection from the effects of electro-
static discharge (ESD), external noise, unexpected ex-
ternal events or program anomalies. The dual data
pointers facilitate external memory operations such as
block moves, saving both time and code space. The
80C321 is the ROM-less version of the 80C521. The
87C521 is the EPROM version of the 80C521.

80C541/87C541

The 80C541 is identical to the 80C521 except the on-chip
Program Memory has been increased to 16K bytes. The
87C541 is the EPROM version of the 80C541.

80C324

The 80C324 is a superset of the 80C321 and includes
one additional feature—Port Expansion Mode. The
80C324 provides a port expansion capability for adding
up to 14 additional full-speed and performance 8-bit /O
ports. The new ports are constructed externally by multi-
plexing through Port 1 and using EA/PXS for strobe
timing. Port 3 operates as normal; however, other ports,
including Port 0 and Port 2, which normally are sacrificed
for a multiplexed data/address bus, are reconstructed.

The new ports are accessed by software exactly as if they
existed on-chip. The entire 8051 family instruction set is
available for these additional ports. Traditional memory-
mapped I/O ports allow only four instructions to be used,
vastly reducing their effectiveness.

MEMORY ORGANIZATION IN 8051
FAMILY DEVICES

Logical Separation of Program and Data
Memory

All 8051 Family devices have separate address spaces
for Program and Data Memory, as shown in Figure 1-2.

The logical separation of Program and Data Memory
allows the Data Memory to be accessed by 8-bit ad-
dresses, which can be more quickly stored and manipu-
lated by an 8-bit CPU. Nevertheless, 16-bit DataMemory
addresses can also be generated through the DPTR
register.

Program Memory can only be read, not written to. There
can be up to 64K bytes of Program Memory. In the
80C51BH and the 87C51, the lowest 4K bytes of Pro-
gram Memory are on-chip. The read strobe for external
Program Memory is the signal PSEN (Program Store
Enable).

Data Memory occupies a separate address space from
Program Memory. Up to 64K bytes of external RAM can
be addressed in the external Data Memory space. The
CPU generates read and write signals, RD and WR as
needed during external Data Memory accesses.

External Program Memory and external Data Memory
may be combined if desired by applying the RD and PSEN
signals to the inputs of an AND gate and using the output
of the gate as a read strobe to the external Program/Data
Memory.

Program Memory

Figure 1-3 shows a map of the lower part of Program
Memory. After reset, the CPU begins execution from
location 0000H.

As shownin Figure 1-3, eachinterrupt is assigned a fixed
location in Program Memory. The interrupt causes the
CPU to jump to that location, where it commences
execution of the service routine. External Interrupt 0, for
example, is assigned to location 0003H. If External
Interrupt 0 is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to be
used, its service location is available as general purpose
Program Memory.

Interrupt service locations are spaced at 8-byte intervals:
0003H for External Interrupt 0, 000BH for Timer 0,0013H
for External Interrupt 1, 001BH for Timer 1, etc. If an
interrupt service routine is short enough (as is often the

1-3

CHAPTER 1
8051 Family Overview

PROGRAM MEMORY
(READ ONLY)

FFFFH:

EXTERNAL

\
f

fA=0
EXTERNAL

fAnt
INTERNAL

¢ 0000

y v

L R e L L T ey
L Y el el L L X T

FSEN

DATA MEMORY

(READ/ WRITE)
S S A A T T)
']
] FFFFH:]
]]
]]
] '
]]
]]
i i
: EXTERNAL —§| :
] '
]]
: :
']

< <
: N } :
] '
]]
]]
]]
' i
] INTERNAL]
: FFH:"-..--. :
' H '
o :
' H]
']
] '
i i
: 00 0000 :
i } { '
foewnscsacncoonenssssee L X] coeoed

Figure 1-2. 80C51 Memory Structure

case in control applications), it can reside entirely within
that 8-byte interval. Longer service routines can use a
jump instruction to skip over subsequent interrupt loca-
tions, if other interrupt locations are in use.

The lowest 4K (or 8K in the 80C52T2/80C521) bytes of
Program Memory can be either in the on-chip ROM or in
an external ROM. This selection is made by strapping the
EA (External Access) pin to either Vo Vg

In the 80C51, if the EA pin is strapped to V., then
program fetches to addresses 0000H through OFFFH
are directed to the internal ROM. Program fetches to
addresses 1000H through FFFFH are directed to exter-
nal ROM.

In the 80C52T72/80C521, EA = V, selects addresses
0000H through 1FFFH to be internal, and addresses
2000H through FFFFH to be external.

If the EA pin is strapped to Ve then all program fetches
are directed to external ROM. The ROMIless parts must
have this pin externally strapped to V¢ to enable themto
execute from external Program Memory.

The read strobe to external ROM, PSEN, is used for all
external program fetches. PSEN is not activated for in-
ternal program fetches.

The hardware configuration for external program execu-
tion is shown in Figure 1-4. Note that 16 I/O lines (Ports
0 and 2) are dedicated to bus functions during external
Program Memory fetches. Port 0 (PO in Figure 1-4)
serves as a multiplexed address/data bus. It emits the
low byte of the Program Counter (PCL) as an address,
and then goes into a float state awaiting the arrival of the

~
\\ﬁ -
(eeeep (0033H)

R 002BH

— 0023H
e

P s 0013H

e 000BH

L J— 0003H

RESET emmrmpy 0000H

Flgure 1-3. 80C51 Program Memory

1-4

CHAPTER 1
8051 Family Overview

code byte from the Program Memory. During the time
that the low byte of the Program Counter is valid on
PO, the signal ALE (Address Latch Enable) clocks this
byte into an address latch. Meanwhile, Port 2 (P2 in
Figure 1-4) emits the high byte of the Program Counter
(PCH). Then PSEN strobes the EPROM and the code
byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide,
eventhough the actual amount of Program Memory used
may be lessthan 64K bytes. External Program execution
sacrifices two of the 8-bit ports, PO and P2, to the function
of addressing the Program Memory.

Data Memory

The right half of Figure 1-2 shows the internal and
external Data Memory spaces available to the 8051
Family user.

Figure 1-5 shows a hardware configuration for accessing
up to 2K bytes of external RAM. The CPU in this case is
executing from internal ROM. Port 0 serves as a multi-
plexed address/data bus to the RAM, and 3 lines of Port
2 are being used to page the RAM. The CPU generates
RD and WR signals as needed during external RAM
accesses.

There can be up to 64K bytes of external Data memory.
External Data Memory addresses can be either 1 or 2
bytes wide. One-byte addresses are often used in con-
junctionwithone or more other /O lines to page the RAM,
as shownin Figure 1-5. Two-byte addresses can also be
used, in which case the high address byte is emitted at
Port 2.

Internal Data Memory is mapped in Figure 1-6. The
memory space is shown divided into three blocks, which

are generally referred to as the Lower 128, the Upper
128, and SFR space.

Internal Data Memory addresses are always 1 byte wide,
which implies an address space of only 256 bytes.
However, the addressing modes for internal RAM can in
fact accommodate 384 bytes, using a simple trick. Direct
addresses higher than 7FH access one memory space,
and indirect addresses higher than 7FH access a differ-
ent memory space. Thus Figure 1-6 shows the Upper
128 and SFR space occupying the same block of ad-
dresses, 80H through FFH, although they are physically
separate entities.

The Lower 128 bytes of RAM are present in all 8051
Family devices as mapped in Figure 1-7. The lowest 32
bytes are grouped into 4 banks of 8 registers. Program
instructions call out these registers as RO through R7.
Two bits inthe Program Status Word (PSW) select which
register bank is in use. This allows more efficient use of
code space, since register instructions are shorter than
instructions that use direct addressing.

The next 16 bytes above the register banks form a block
of bit-addressable memory space. The 8051 Family
instruction set includes a wide selection of single-bit
instructions, and the 128 bits in this area can be directly
addressed by these instructions. The bit addresses in
this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by
either direct or indirect addressing. The Upper 128 (Fig-
ure 1-8) can only be accessed by indirect addressing.
The Upper 128 bytes of RAM are not implemented in the
80C51.

Figure 1-9 gives a brief look at the Special Function
Register (SFR) space. SFRs include the Port latches,

8051 EPROM
P1 PO M INSTR,
B
E —
ALE "
LATCH ADDR
=S >
PSEN Ot

Figure 1-4. Executing from External Program Memory

N2

fF ok

8051 EA p=vCC
WITH INTERNAL LATCH | RAM
—/

ROM e

ADDR

-
-

P3 P2 <
B . .

Lz

®k3
|'f.w

Figure 1-5. Accessing External Data Memory.
If the Program Memory Is Internal, the Other
Bits of P2 are Avallable as I/0

1-5

CHAPTER 1
8051 Family Overview

7FH
FFH?==e=eeoe FFH
\ ACCESSIBLE | ACCESSIBLE BANK 2FH]
UPPER 4 BY INDIRECT | BY DIRECT SELECT - ABLE SPACE
128 : ADDgES?ING ADDRESSING BITS IN (B;I;T AA%%:EESSSSEE 0=7F)
sont oM 80H Psw g L J
7FH 1FH})
AcCESSIBLE | \—spECIAL) porrs {00
LOWER | BY DIRECT FUNCTION | <raris aNp T
128 | AND INDIRECT REGISTERS] conTROL BITS 10{ "7H | 4 sanks oF
ADDRESSING TMER L0 1 |8 RecisTERS
REGISTERS 01 [08H OFH} [Ro=R?
STACK POINTER Lol N—
ACCUMULATOR 00 { 07He1— RESET VALUE OF
ETC. 0) STACK POINTER
(eTc)
Figure 1-6. Internal Data Memory Figure 1-7. The Lower 128 Bytes of Internal RAM

timers, peripheral controls, etc. These registerscanonly ~ Sixteen addresses in SFR space are both byte- and bit-
be accessed by direct addressing. In general, all 8051 addressable. The bit-addressable SFRs are those
Family microcontrollers have the same SFRs as the whose address ends in 000B. The bit addresses in this
80C51, and at the same addresses in SFR space. How- area are 80H through FFH.

ever, enhancements to the 80C51 have additional SFRs

that are not present in the 80C51, nor perhaps in other

proliferations of the family.

— FFH :
FFH . REGISTER=MAPPED PORTS
EOH AcC
- ADDRESSES THAT END IN
i OH OR 8H ARE ALSO
NO BIT~ADDRESSABLE : BIT-ADDRESSABLE
SPACES BoH| PORT 3
AVAILABLE AS STACK : =PORT PINS
SPACE IN 8052 . =ACCUMULATOR
-PSW
NOT IMPLEMENTED IN 8051 AOH| PORT 2 (eTc.)
90H| PORT 1
'
80H :
80H| PORT O
Figure 1-8. The Upper 128 Bytes of Internal RAM Figure 1-9. SFR Space

1-6

CHAPTER 2

8051 Family Architecture

Introduction

Memory Organization
Oscillator and Clock Circuit
CPU Timing

Port Structures and Operation

Accessing External Memory
Timer/Counters

Serial Interface

interrupts

Single-Step Operation

Reset

Power-Saving Modes of Operation
More About the On-Chip Oscillator
Internal Timing

80C51BH Pin Descriptions

2-2
2-3
2-4
2-5

2-8

2-10
2-13
2-23
2-26

2-26
2-27
2-28
2-31
2-31

CHAPTER 2

¢

8051 Family Architecture

INTRODUCTION

This chapter and the remainder of Section | covers the
basic architecture and instruction set of the 8051 Family.
In these chapters the terms “8051” and “8051 Family”
referto the entire family of microcontrollers inboth CMOS
and NMOS technologies. Differences in functionality
between the CMOS and NMOS products will be specifi-
cally noted where they occur.

The term “8052” refers to a version of the 8051 with
double the amount of memory (8K bytes ROM and 256

bytes RAM) and an extra timer. In this section it will be
used specifically to describe changes due to this third
timer.

Section Il focuses on AMD’s portfolio of CMOS 80C51
products. It is organized by product family with data-
sheets, application notes and other information pertain-
ing to features beyond the basic core architecture de-
scribed in Section i. Thus, the reader experienced with
the 8051 may wish to begin in Section II.

£0.0-P0.7 P2.0-P2.7
____________________ -
vee r PORT 2 |
-] DRIVERS I
Vss |
T g |
I S0 J0 |
| 20 EPROM/
s RAM { PORT 0 l I PORT 2 I ROM I
| LATCH LATCH
| |
’ I
| C. I
| |
]| Gl o e
‘ REGISTER |
! 8 T™P2 T™P1) I
| LReGISTER BUFFER <—’> ‘
1
| PCON [SCON [TMOD| TCON N Y |
T2CON'| THO TLO TH1
I ALY TL1 | TH2® | TL2 |RCAPZH' |
I ‘ RCAP2L'| SBUF | IE P INCREMENTER
INTERRUPT, SERIAL |
| m PORT AND TIMER |
BLOCKS PROGR
| COUNTER <::> I
PSEN a1 ‘_5__5 ‘ |
ne =] e (g8 o Kt
EA — controL |ESIN L]
RST ‘+ g I
I3 !
| |
; |
| osc |
| I
Cd e gEmEEH—— — — — — — — O EHEREa— — ——— — J

P1.0-P1.7

‘Resident in 8052/8032 only.

P3.0-P3.7

Figure 2-1. 8051 Family Architecture

2-1

CHAPTER 2
8051 Family Architecture

Table 2-1 80C51 Core Products

Internal Memory

Part ROM EPROM RAM
(bytes) (bytes) (bytes)
80C31BH - - 128
80C51BH 4K - 128
87C51 - 4K 128
80C32T2 - - 256
80C52T2 8K - 256
87C52T2 - 8K 256

The major 8051 Family features are:
« 8-bit CPU
= On-Chip oscillator and clock circuitry
» 321/0lines
» 64Kbytes address space for external Data Memory

* 64K bytes address space for external Program
Memory

» Two 16-bit timer/counters (three on 8032/8052)

« A five-source interrupt structure (six sources on
8032/8052) with two priority levels

« Full duplex serial port
« Boolean Processor

MEMORY ORGANIZATION

The 8051 has separate address spaces for Program
Memory and Data Memory. The Program Memory canbe
up to 64K bytes long. The lower 4K bytes (8K for
80C52T2) may reside on-chip. The Data Memory can
consist of up to 64K bytes of off-chip RAM, in addition to
which itincludes 128 bytes of on-chip RAM (256 bytes for
the 80C52T2), plus a number of “SFRs” (Special Func-
tion Registers) as listed below.

Symbol Name Address
*ACC Accumulator 0EOH
*B B Register OFOH
*PSW Program Status Word ODOH
SP Stack Pointer 81H
DPTR Data Pointer 83H

(consisting of DPH and DPL) 82H
*PO Port 0 80H
*P1 Port 1 90H

Symbol Name Address
*P2 Port 2 0AOH
*P3 Port 3 0BOH
*IP Interrupt Priority Control 0B8H
*IE Interrupt Enable Control 0A8H
TMOD Timer/Counter Mode

Control 89H
*TCON Timer/Counter Control 88H
+*T2CON Timer/Counter 2 Control 0C8H
THO Timer/Counter 0

(high byte) 8CH
TLO Timer/Counter 0

(low byte) 8AH
TH1 Timer/Counter 1

(high byte) 8DH
TL1 Timer/Counter 1

(low byte) 8BH
+ TH2 Timer/Counter 2

(high byte) OCDH
+ TL2 Timer/Counter 2

(low byte) 0CCH
+ RCAP2H Timer/Counter 2 Capture

Register (high byte) 0CBH
+RCAP2L Timer/Counter 2 Capture

Register (low byte) 0CAH
*SCON Serial Control 98H
SBUF Serial Data Buff 99H
PCON Power Control 87H

The SFRs marked with an asterisk (*) are both bit- and
byte-addressable. The SFRs marked with a plus sign (+)
are present in timer 2 of the 8052 only. The functions of
the SFRs are described as follows.

Accumulator

ACC is the Accumulator register. The mnemonics for
accumulator-specific instructions, however, refer to the
accumulator simply as A.

B Register

The B register is used during multiply and divide opera-
tions. For other instructions it can be treated as another
scratch pad register.

Program Status Word

The PSW register contains program status information
as detailed in Figure 2-2.

2-2

CHAPTER 2
8051 Family Architecture

(MSB) (LSB)
lcy | ac | Fo [Rstmrso]ov] — [p |
Symbol Position Name and Significance Symbol Position Name and Significance
cYy PSW.7 Carry flag. — PSW.1 (reserved)
AC PSW.6 Auxiliary Carry flag. P PSW.0 Parity flag.
(For BCD operations.) Set/cleared by hardware
=) PSW5 Flag 0 each instruction cycle to
(Available to the user for indicate an odd/even
general purposes.) number of “one” bits in the
accumulator, i.e., even
RS1 PSW.4 Register bank Select pari?y.
control bits 1 & 0.
RSO PSW.3 Set/cleared by software to ~ 'Note— the contents of (RS1, RS0) enable the
determine working working register banks as follows:
register bank (see Note). (0.0)—Bank 0 (00H-07H)
ov PSW.2 Overflow flag. (0.1)—Bank 1 (08H-OFH)
(1.0)—Bank 2 (10H-17H)
(1.1)—Bank 3 (18H-1FH)

Figure 2-2. PSW: Program Status Word Register

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incremented
before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on-chip RAM,
the Stack Pointer is initialized to 07H after a reset. This
causes the stack to begin at location 08H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH)
and alow byte (DPL). Its intended functionisto hold a 16-
bit address. It may be manipulated as a 16-bit register or
as two independent 8-bit registers.

Ports 0to 3

PO, P1, P2, and P3 are the SFR latches of Ports 0, 1, 2,
and 3, respectively.

Serial Data Buffer

The Serial Data Buffer is actually two separate registers,
atransmit bufferand areceive buffer register. Whendata
is moved to SBUF, it goes to the transmit buffer where it
is held for serial transmission. (Moving a byte to SBUF is
what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

Timer Registers

Register pairs (THO, TLO), (TH1, TL1), and (TH2, TL2)
are the 16-bit counting registers for Timer/Counters 0, 1,
and 2, respectively.

Capture Registers

The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 “capture mode.” Inthis mode, in

response to a transition at the 8052’s T2EX pin, TH2 and
TL2 are copied into RCAP2H and RCAP2L. Timer 2 also
has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L, holdthe reload value forthis mode. More about
Timer 2’s features on page 2-12.

Control Registers

Special Function Registers IP, IE, TMOD, TCON,
T2CON, SCON, and PCON contain control and status
bits for the interrupt system, the timer/counters, and the
serial port. They are described in later sections.

OSCILLATOR AND CLOCK CIRCUIT

XTAL1 and XTAL2 are the output and input of a single-
stage on-chip inverter, which can be configured with off-
chip components as a Pierce oscillator, as shown in
Figure 2-3. The on-chip circuitry, and selection of off-chip
components to configure the oscillator are discussed on
page 2-28.

30pf + 10pf FOR CRYSTALS
40pf + 10pf FOR CERAMIC RESONATORS

18
;\L XTAL 2

._[__0

XTAL 1

J(_
LAY 19

30pf + 10pf FOR CRYSTALS
40pf + 10pf FOR CERAMIC RESONATORS

Figure 2-3. Crystal/Ceramic Resonator Oscillator

CHAPTER 2
8051 Family Architecture

The oscillator drives the internal clock generator, which CPU TIMING
provides the internal clocking signals to the chip. The
internal clocking signals are at half the oscillator fre-
quency, and define the internal phases, states, and
machine cycles, described in the next section.

A machine cycle consists of six states (12 oscillator
periods). Each state is divided into a Phase 1 half, during
which the Phase 1 clock is active, and a Phase 2 half,
duringwhichthe Phase 2 clockis active. Thus, a machine
cycle consists of 12 oscillator periods, numbered S1P1

READ NEXT
| OPCODE (DISCARD).

s1 | s2 | s3 | s4 | ss | s6 | s1 | s2 | s3 | sa | ss | s6 | s
osc. P1 P2 |P1 P2 |P1 P2 [P1 P2 IP1 P2 |P1 P2 |P1 P2 |P1 P2 IP1 P2 lP1 P2 IP1 P2 IP1 P2 IP1 2
(XTALY)
| ! |
A | N I N [% f_——
1
| | |
I READOPCODE. Rgap NEXT | '
OPCODE
: (DISCARD). | READ NEXT OPCODE AGAIN. |
------ [s1Js2[sa[s4]ss[ss]-_—_' |
! [
a. 1-byte, 1-cycle Instruction, e.g., INC A. | '
|
: READ OPCODE. I |
| READZNDBYTE, __READ NEXT OPCODE. !
________ | Ly '
_______ [st [s2 [s3 | sa [s5 |86 | |
| ! |
b. 2-byte, 1-cycle Instruction, e.g., ADD A, #data l |
| I |
l READ OPCODE. [READ NEXT OPCODE AGAIN.]
|

|

[81 | s2 | s3 [s4 [ss [s6 [s1 [s2 | s3 [sa | s5 | se |
|
l

READ NEXT OPCODE AGAIN.

|
| &ng\aepcooe No |
' READ NEXT FETCH. NO FETCH.

[OPCODE (DISCARD) | - NOALE I
______ | ([Y — | e
______ [s1[sz[sa[s4[ss[se[s1[sz]sa]s4]ss[sc]__ L

' leon l DATA J |
d. MOVX (1-byte, 2-cycle) |

| ACCESS EXTERNAL MEMORY |

Figure 2-4. 8051 Fetch/Execute Sequences

CHAPTER 2
8051 Family Architecture

(State 1, Phase 1) through S6P2 (State 6, Phase 2). Each
phase lasts for one oscillator period. Each state lasts for
two oscillator periods. Typically, arithmetic and logical
operations take place during Phase 1 and internal regis-
ter-to-register transfers take place during Phase 2.

The diagrams in Figure 2-4 show the fetch/execute
timing referenced to the internal states and phases.
Since these internal clock signals are not user acces-
sible, the XTAL1 oscillator signal and the ALE (Address
Latch Enable) signa! are shown for external reference.
ALE is normally activated twice during each machine
cycle: one during S1P2 and S2P1, and again during
S4P2 and S5P1.

Execution of a one-cycle instruction begins at S1P2,
when the opcode is latched into the Instruction Register.
If it is a 2-byte instruction, the second byte is read during
S4 of the same machine cycle. If it is a 1-byte instruction,
there is still a fetch at S4, but the byte read (which would
be the next opcode) is ignored, and the Program Counter
is not incremented. In any case, execution is complete at
the end of S6P2. Figures 2-4a and 2-4b show the timing
for a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle
instruction.

Most 8051 instructions execute in one cycle. MUL (multi-
ply) and DIV (divide) are the only instructions that take
more than two cycles to complete. They take fourcycles.

Normally, two code bytes are fetched from Program
Memory during every machine cycle. The only exception
to this is when a MOVX instruction is executed. MOVX is
a 1-byte 2-cycle instruction that accesses external Data
Memory. During a MOV X, two fetches are skipped while
the external Data Memory is being addressed and
strobed. Figures 2-4c and 2-4d show the timing for a
normal 1-byte, 2-cycle instruction and for a MOVX in-
struction.

PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists
of alatch (Special Function Registers PO through P3), an
output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers
of Port 0, are usedinaccessesto external memory. Inthis
application, Port 0 outputs the low byte of the external
memory address, time-multiplexed with the byte being
writtenorread. Port 2 outputs the highbyte of the external

ADDR/DATA
cc
READ CONTROL
LATCH :D_'
INT. BUS 5 N
PO.X | 9P
WRITE LATCH JJo————I
TO cL o al MUX
LATCH
READ
PIN
a. Port 0 Bit
ADDR
CONTROL Yee
READ INTERNAL
LATCH PULL-UP %
MUX
INT.
NT.BUS D P2.XQ - _
WRITE LATCH %
T0 oL @ =0
LATCH
READ
PIN
c. Port 2 Bit

*See Figure 2-6 for details of the internal pull up.

READ
LATCH

Vee

INTERNAL
PULL-UP#*

INT. BUS

b. Port 1 Bit

ALTERNATE
QUTPUT
FUNCTION

READ

LATCH Vee

INTERNAL
PULL-UP #

INT. BUS

P
| N
ALTERNATE
INPUT

FUNCTION
d. Port 3 Bit

Figure 2-5. 8051 Port Bit Latches and I/O Buffers

2-5

CHAPTER 2
8051 Family Architecture

memory address when the address is 16 bits wide.
Otherwise the Port 2 pins continue to emit the P2 SFR
content.

All the Port 3 pins, and (in the 8052) two Port 1 pins are
multifunctional. They are not only port pins, but also
serve the functions of various special features as listed
below:

Port Pin Alternate Function

*P1.0 T2 (Timer/Counter 2 external input)

*P1.1 T2EX (Timer/Counter 2 capture/reload
trigger)

P3.0 RXD (serial input port)

P3.1 TXD (serial output port)

P3.2 TNTO (external interrupt)

P3.3 TNTT (external interrupt)

P3.4 TO (Timer/Counter 0 external input)

P3.5 T1 (Timer/Counter 1 external input)

P3.6 WR (external Data memory write
strobe)

P3.7 RD (external Data memory read
strobe)

*P1.0 and P1.1 serve these alternate functions only on
the 8052.

The alternate functions can only be activated if the
corresponding bit latch in the port SFR contains a 1.
Otherwise the port pin is stuck at 0.

I/0 Configurations

Figure 2-5 shows a functional diagram of a typical bit
latch and IO buffer in each of the four ports. The bit iatch
(one bitinthe port's SFR) is represented as a Type D flip-
flop, which will clock in a value from the internal bus in
response to a “write to latch” signal fromthe CPU. The Q
output of the flip-flop is placed on the internal bus in
response to a “read latch” signal from the CPU. The level
of the port pin itself is placed on the internal bus in
response to a “read pin” signal from the CPU. Some
instructions that read a port activate the “read latch”
signal, and others activate the “read pin” signal. More
about that on page 2-8.

As shown in Figure 2-5, the output drivers of Ports 0 and
2 are switchable to an internal ADDR and ADDR/DATA
bus by an internal CONTROL signal for use in external
memory accesses. During external memory accesses,
the P2 SFR remains unchanged, but the PO SFR gets 1s
written to it.

Also shown in Figure 2-5, is that if a P3 bit latch contains
a 1, then the output level is controlied by the signal

labeled “alternate output functions.” The actual P3.X pin
level is always available to the pin’s alternate input
function, if any.

Ports 1, 2, and 3 have interna! pull-ups. Port 0 has open-
drain outputs. Each I/O line can be independently used
as an input or an output. (Ports 0 and 2 may not be used
as general purpose 1/0 when being used as the ADDR/
DATA BUS.) To be used as an input, the port bit latch
must contain a 1, which turns off the output driver FET.
Then, for Ports 1, 2, and 3, the pin is pulled high by the
internal pull-up, but can be pulled low by an external
source.

Port 0 differs in not having internal pullups. The pullup
FET inthe PO output driver (see Figure 2-5a) isused only
when the Port is emitting 1s during external memory
accesses. Otherwise the pullup FET is off. Consequently
PO lines that are being used as output port lines are open
drain. Writing a 1 to the bit latch leaves both output FETs
off, so the pin floats. In that condition it can be used as a
high-impedance input.

Because Ports 1,2, and 3 have fixed internal pullups they
are sometimes called “quasi-bidirectional” ports. When
configured as inputs they pull high and will source current
(IIL, in the data sheets) when externally pulled low. Port
0, on the other hand, is considered “true” bidirectional,
because when configured as an input it floats.

Allthe port latches inthe 8051 have 1s written to them by
the reset function. If a 0 is subsequently written to a port
latch, it canbe reconfigured as aninput by writing a 1
toit.

Writing to a Port

Inthe execution of an instruction that changes the value
in a port latch, the new value arrives at the latch during
S6P2 of the final cycle of the instruction. However, port
latches are in fact sampled by their output buffers only
during Phase 1 of any clock period. (During Phase 2 the
output buffer holds the value it saw during the previous
Phase 1.) Consequently, the new value in the port latch
won't actually appear at the output pin until the next
Phase 1, which willbe at S1P1 of the next machine cycle.

Ifthe change requires a 0-to-1 transitionin Port 1, 2, 0r 3,
an additional pull-up is turned on during S1P1 and S1P2
of the cycle in which the transition occurs. This is done to
increase the transition speed. The extra pull-up can
source about 100 times the current that the normal pull-
up can. It should be noted that the internal pull-ups are
field-effect transistors, not linear resistors. The pull-up
arrangements are shown in Figure 2-6.

2-6

CHAPTER 2
8051 Family Architecture

In NMOS versions of the 8051, the fixed part of the pull-
up is a depletion-mode transistor with the gate wired to
the source. This transistor will allow the pin to source
about 0.25 mA when shorted to ground. In parallel with
the fixed pull-up is an enhancement-mode transistor,
which is activated during S1 whenever the port bit does
a 0-to-1 transition. During this interval, if the port pin is
shorted to ground, this extra transistor will allow the pin
to source an additional 30 mA.

In the CMOS versions, the pull-up consists of three
pFETSs. It should be noted that an n-channel FET (nFET)
is turned on when logical 1 is applied to its gate, and is
turned off when a logical 0 is applied to its gate. A p-
channel FET (pFET) is the opposite: it ison wheniits gate
sees a 0, and off when its gate sees a 1.

Transistor pFET 1 in Figure 2-6 is turned on for two
oscillator periods after a 0-to-1 transition in the port latch.
While it’s on, it turns on pFET 3 (a weak pull-up) through
the inverter. This inverter and pFET 3 form a latch which
holds the 1.

Note that if the pin is emitting a 1, a negative glitchonthe
pin from some external source can turn off pFET 3,
causing the pin to go into a float state; pFET 2 is a very
weak pull-up which is on whenever the nFET is off, in
traditional CMOS style. It's only about 1/10 the strength
of pFET 3. Its function is to restore a 1 to the pin in the
event the pin had a 1 and lost it to a glitch.

2 OSC. PERIODS

PIN

Vcc
ENHANCEMENT MODE FET
FET

[_{ —DEPLETION MODE

l ‘ PORT
|
1

Vss

a. NMOS Configuration

2 0SC. PERIODS

Q o—4¢

Vce

d. [

PORT
PIN

b=

FROM PORT
LATCH

INPUT
DATA

o

READ
PORTPIN

b. CMOS Configuration

Figure 2-6. Ports 1 and 3 NMOS and CMOS Internal Pull-up Configurations.
(Port 2 is similar except that it holds the strong pull-up on while emitting 1s that are address bits.)

2-7

CHAPTER 2
8051 Family Architecture

Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive four
LS TTL inputs. The ports on NMOS versions can be
driven in a normal manner by any TTL or NMOS circuit.
Both NMOS and CMOS pins can be driven by open-
collector and open-drain outputs, but note that 0-to-1
transitions will not be fast. Inthe NMOS device, if the pin
is driven by an open-collector output, a 0-to-1 transition
will have to be driven by the relatively weak depletion
mode FET in Figure 2-6a. In the CMOS device, an input
0 turns off pull-up pFETS3, leaving only the very weak pull-
up pFET2 to drive the transition.

Port 0 output buffers can each drive 8 LS TTL inputs.
They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the
ADDRESS/DATA bus.

Read-Modify-Write Feature

Some instructions that read a port, also read the latch,
and others read the pin. Which ones do which? The
instructions that read the latch rather than the pin are the
ones that read a value, possibly change it, and then
rewrite it to the latch. These are called “read-modify-
write” instructions, listed below. When the destination
operand is a port or a port bit, these instructions read the
latch rather than the pin:

ANL (logical AND, e.g., ANL P1,A)

ORL (logical OR, e.g., ORL P2,A)

XRL (logical EX-OR, e.g., XRL P3,A)

JBC (jump if bit = 1 and clear bit, e.g.,
JBC P1.1, LABEL)

CPL (complement bit, e.g., CPL P3.0)

INC (increment, e.g., INC P2)

DEC (decrement, e.g., DEC P2)

DJNZ (decrement and jump if not zero, e.g.,
DJNZ P3, LABEL)

MOV PX.Y,C (move carry bit to bit Y of Port X)

CLR PX.Y (clear bit Y of Port X)

SET PX.Y (set bit Y of Port X)

It is not obvious that the last three instructions in this list
are read-modify-write instructions, but they are. They
read the port byte, all 8 bits, modify the addressed bit,
then write the new byte back to the latch.

The reason that read-modify-write instructions are di-
rected to the latch rather than the pin is to avoid possible
misinterpretation of the voltage level at the pin. For
example, a port bit might be used to drive the base of a
transistor. When a 1 is written to the bit, the transistor is

turned on. If the CPU then reads the same port bit at the
pinratherthanthe latch, it willread the base voltage of the
transistor and interpret it as a 0. Reading the latch rather
than the pin will return the correct value of 1.

ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external
Data Memory. Accesses to external Program Memory
use signal PSEN (program store enable) as the read
strobe. Accesses to external DataMemory use RD or WR
(alternate functions of P3.7 and P3.6) to strobe the
memory.

Fetches from external Program Memory always use a
16-bit address. Accesses to external Data Memory can
use either a 16-bit address (MOVX @DPTR) or an 8-bit
address (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration of the read or write cycle. Note that the Port 2
drivers use the strong pull-ups during the entire time that
they are emitting address bits that are 1s. This is during
the execution of a MOVX @DPTR instruction. During this
time the Port 2 latch (the Special Function Register) does
not have to contain 1s, and the contents of the Port 2 SFR
are not modified. If the external memory cycle is not
immediately followed by another external memory cycle,
the undisturbed contents of the Port 2 SFR will reappear
in the next cycle.

If an 8-bit address is being used (MOVX @RIi), the
contents of the Port 2 SFR remain at the Port 2 pins
throughout the external memory cycle. This will facilitate

paging.

In any case, the low byte of the address is time-multi-
plexed with the data byte on Port 0. The ADDR/DATA
signaldrives both FETs inthe Port 0 output buffers. Thus,
in this application the Port 0 pins are not open-drain
outputs, and do not require external pull-ups. Signal ALE
(address latch enable) should be used to capture the
address byte into an external latch. The address byte is
valid at the negative transition of ALE. Then, in a write
cycle, the data byte to be written appears on Port 0 just
before WR is activated, and remains there until after WR
is deactivated. In a read cycle, the incoming byte is
accepted at Port 0 just before the read strobe is deacti-
vated.

During any access to external memory, the CPU writes
OFFH to the Port 0 latch (the Special Function Register),
thus obliterating whatever information the Port 0 SFR
may have been holding.

2-8

CHAPTER 2
8051 Family Architecture

External Program Memory is accessed under two condi-
tions:

1) Whenever signal EA is active; or

2) Whenever the program counter (PC) contains a
number that is larger than OFFFH (1FFFH for the
80C52T2)

This requires that the ROMIess versions have EA wired
low to enable the lower 4K (8K forthe 80C32T2) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program
Memory, all 8 bits of Port 2 are dedicated to an output
function and may not be used for general purpose I/O.
During external program fetches they output the high
byte of the PC. During this time the Port 2 drivers use the
strong pull-ups to emit PC bits that are 1s.

PSEN

The read strobe for external fetches is PSEN, which is not
activated for internal fetches. When the CPU is access-

ing external Program Memory, PSEN is activated twice
every cycle (except during a MOV X instruction) whether
or not the byte fetched is actually needed for the current
instruction. When PSEN is activated, its timing is not the
same as RD. A complete RD cycle, including activation
and deactivation of ALE and RD, takes 12 oscillator
periods. Acomplete PSEN cycle, including activation and
deactivation of ALE, and PSEN, takes 6 oscillator peri-
ods. The execution sequence for these two types of read
cycles is shown in Figure 2-7 for comparison.

ALE

The main function of ALE is to provide a properly timed
signal to latch the low byte of an address from PO to an
external latch during fetches from external Program
Memory. For that purpose ALE is activated twice every
machine cycle. This activationtakes place evenwhenthe
cycle involves no external fetch. The only time an ALE
pulse doesn’t come out is during an access to external

ONE MACHINE CYCLE

Is1|sz|ss|54|ss|ss s1]sz|sa!

ONE MACHINE CYCLE

1wl

s4 | ss

ae —1 1 1 [1 1
| ! I 1

| 4 l 1

e | L [LTl a.

PSEN | ! 1 ! ! Without a
RD X : H : : MOVX
.
! | ! | !
P2PCHOUTY | PcHOuT X ! PcHOuT X | PcHOUT X ' PcHOUT X PCHOUT
| | |
| | |
PO —(%) Ca—Ces ——) Ca—(58) &,
1 1
1 I]] i
{ pcLout { pcLouT {pcLout { pcLouT
VALID VALID VALID VALID
} CYCLE 1 CYCLE2 {
$1 | s2|s3|se|ss|s6|s1|s2]s3|sa]ss]|se
we —1 L 1 [1 [L
I I
v)

PSEN J | L J ! !]_r—:‘-* b
— , .
RD , } ; : With a

|] | MOVX
P2pcHouTX " pcHoutr X ! DPH OUT OR P2 OUT X _TpcHout XPcHouT
t T M T
- D E@-EDED——E— B~
OouT, IN ouT,
tecLour t aooR our t pcLour
VALID VALID VALID

Figure 2-7. External Program Memory Execution

2-9

CHAPTER 2
8051 Family Architecture

Data Memory. The first ALE of the second cycle of a
MOVX instruction is missing (see Figure 2-7). Conse-
quently, in any system that does not use external Data
Memory, ALE is activated at a constant rate of 1/6 the
oscillator frequency, and can be used for external clock-
ing or timing purposes.

Overlapping External Program and Data
Memory Spaces

In some applications it is desirable to execute a program
from the same physical memory that is being used to
store data. In the 8051, the external Program and Data
Memory spaces can be combined by ANDing PSEN and
RD. A positive-logic AND of these two signals produces
an active-low read strobe that can be used for the
combined physical memory. Since the PSEN cycle is
faster than the RD cycle, the external memory needs to
be fast enough to accommodate the PSEN cycle.

TIMER/COUNTERS

The 8051 has two 16-bit timer/counter registers: Timer 0
and Timer 1. The 8052 has these two plus one more:
Timer 2. All three can be configured to operate either as
timers or event counters.

In the “timer” function, the register is incremented every
machine cycle. Thus, one can think of it as counting
machine cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is 1/12 of the oscillator
frequency.

In the “counter” function, the register is incremented in
response to a 1-to-0 transition at its corresponding exter-

nal input pin, TO, T1, or (in the 8052) T2. In this function,
the external input is sampled during S5P2 of every
machine cycle. When the samples show a high in one
cycle and a low in the next cycle, the count is incre-
mented. The new count value appears in the register
during S3P1 of the cycle following the one in which the
transition was detected. Since it takes 2 machine cycles
(24 oscillator periods) to recognize a 1-to-0 transition, the
maximum count rate is 1/24 of the oscillator frequency.
There are no restrictions on the duty cycle of the external
input signal, but to ensure that a given level is sampled at
least once before it changes, it should be held for at least
one full machine cycle.

In addition to the “timer” or “counter” selection, Timer 0
and Timer 1 have four operating modes from which to
select. Timer 2, in the 8052, has three modes of opera-
tion: “capture,” “auto-reload” and “baud rate generator.”

Timer 0 and Timer 1

These timer/counters are present in both the 8051 and
the 8052. The “timer” or “counter” function is selected by
control bits C/T in the Special Function Register TMOD
(Figure 2-8). These two timer/counters have four operat-
ing modes, which are selected by bit-pairs (M1, M0) in
counters. Mode 3 is different. The four operating modes
are described below.

Mode 0

Putting either Timer into mode 0 makes it look like an
8048 Timer, which is an 8-bit counter with a divided-by-
32 prescaler. Figure 2-9 shows the mode 0 operation as
it applies to Timer 1.

{MSB) {LSB)

[Gate [o7 [M1 | mo [eate| cF | m1 [mo |

“ N J/

~ ~—
TIMER 1 TIMER O
GATE Gating Control when set. Timer/counter M1 MO Operating Modes.

“x”is enabled only while “INTx” pinis high 0 0 8048 TIMER “TLx" serves as 5-bit prescaler.
and “TRx” control pin is set. When 0 1 16-bit Timer/Counter “THx” and “TLx" are
cleared Timer “x” is enabled whenever cascaded; there is no prescaler.
“TRX” control bit is set. 1 0 8-bit auto-reload timer-counter “THx" hold a

C/T Timer or Counter Selector Cleared for
Timer operation (input from internal
system clock). Set for Counter operation
(input from “Tx” input pin). 1

1

value whichisto be reloadedinto “TLx"” each
time it overflows.

TLO is an 8-bit timer-counter
controlled by the standard Timer
0 control bits.

THO is an 8-bit timer only con-
trolled by Timer 1 control bits.

1 (Timer 0)

1 (Timer 1) Timer-counter 1 stopped.

Figure 2-8 TMOD: Timer/Counter Mode Control Register

2-10

CHAPTER 2
8051 Family Architecture

In this mode, the timer register is configured as a 13-bit
register. As the count rolls over from all 1sto all 0s, it sets
the timer interrupt flag TF1. The counted input is enabled
to the Timer when TR1 =1 and either GATE = 0 or INT1
= 1. (Setting GATE = 1 allows the Timer to be controlled
by external input INTT, to facilitate pulse width measure-
ments.) TR1 is a control bit in the Special Function
Register TCON (Figure 2-10). GATE is in TMOD.

The 13-bit register consists of all 8 bits of TH1 and the
lower 5 bits of TL1. The upper 3 bits of TL1 are indeter-
minate and should be ignored. Setting the run flag (TR1)
does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1.
Substitute TRO, TFO and INTO for the corresponding
Timer 1 signals in Figure 2-9. There are two different
GATE bits, one for Timer 1 (TMOD.7) and one for Timer
0 (TMOD.3)

Mode 1

Mode 1 is the same as Mode 0, except that the Timer
register is being run with all 16 bits.

Mode 2

Mode 2 configures the timer register as an 8-bit counter
(TL1) with automatic reload, as shown in Figure 2-11.
Overflow from TL1 not only sets TF1, but also reloads
TL1withthe contents of TH1, whichis preset by software.
The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

Mode 3

Timer 1in Mode 3 simply holds its count. The effectis the
same as setting TR1 = 0.

oscC +12

TL1 TH1

(5Bits) | (8Bits) TF1 | INTERRUPT

C/T=1 !
CONTROL
T1PIN

Figure 2-9. Timer/Counter 1 Mode 0: 13-bit Counter

(MSB)

(LSB)

|TF1 |TR1] TFO [TRO] IE1 | IT1 } IEO | ITO |

Symbol Position Name and Significance Symbol Position Nameand Significance

TF1 TCON.7 Timer 1 overflow Flag. Set by IE1 TCON.3 Interrupt 1 Edge flag. Set by
hardware on timer/counter over- hardware when external interrupt
flow. Cleared by hardware when edge detected. Cleared when
processor vectors to interrupt interrupt processed.
routine. IT1 TCON.2 Interrupt 1 Type control bit. Set/

TR1 TCON.6 Timer 1 Run control bit. Set/ cleared by software to specify
cleared by software to turn timer/ falling edge/low level triggered
counter on/off. external interrupts.

TFO TCON.5 Timer 0 overflow Flag. Set by IEO TCON.1 Interrupt 0 Edge flag. Set by
hardware on timer/counter over- hardware when external interrupt
flow. Cleared by hardware when edge detected. Cleared when
processor vectors to interrupt interrupt processed.
routine. ITO TCON.0 Interrupt O Type control bit. Set/

TRO TCON.4 Timer 0 Run control bit. Set/ cleared by software to specify

cleared by software to turn timer/
counter on/off.

falling edge/low level triggered
external interrupts.

Figure 2-10. TCON: Timer/Counter Control Register

CHAPTER 2
8051 Family Architecture

Timer 0 in Mode 3 establishes TLO and THO as two
separate counters. The logic for Mode 3 on Timer 0 is
shown in Figure 2-12. TLO uses the Timer 0 control bits:
C/T, GATE, TR0, INTO, and TF0. THO is locked into a
timer function (counting machine cycles) and takes over
the use of TR1 and TF1 from Timer 1. Thus, THO now
controls the “Timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer 0 in Mode 3, an 8051 can
look like it has three timer/counters, and an 8052, like it
has four. When Timer 0 is in Mode 3, Timer 1 can be

turned on and off by switching it out of and into its own
Mode 3, or can still be used by the serial port as a baud
rate generator, or in fact, in any application not requiring
an interrupt.

Timer 2

Timer 2 is a 16-bit timer/counter which is present only in
the 8052. Like Timers 0 and 1, it can operate either as a
timer or as an event counter. This is selected by bit C/T2
in the Special Function Register T2CON (Figure 2-13). It
has three operating modes: “capture,” “autoLoad” and

osc +12
C/T=0 "
— o:/‘ (8 Bits) TF1 |— INTERRUPT
] CiT=1 !
CONTROL
T1PIN
TR1 RELOAD
GATE TH1
(8 Bits)
INTO PIN —
Figure 2-11. Timer/Counter 1 Mode 2: 8-bit Auto-Reload
0osC 12 p— 1/121ggc

/1210sc -——l
C/T=0
TLO PT
— O:/. (@ oit) TFO INTERRU
TOPIN ___—J C/T=1 !
CONTROL
TRO
GATE
TINTO PIN
THO
1/12105¢ L (8 bits) TF1 INTERRUPT
CONTROL
TR ——————

Figure 2-12. Timer/Counter 0 Mode 3: Two 8-bit Counters

CHAPTER 2
8051 Family Architecture

(MSB)

(LSB)

| tr2 | exre | mowk | Tok | Exenz | TR

[C/T2 !CP/‘R‘L‘ﬂ

Symbol Position Name and Significance

TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software.
TF2 will not be set when either RCLK = 1 or TCLK = 1.

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared
by software.

RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow
to be used for the receive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows
to be used for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a
result of a negative transition on T2EX if Timer 2 is not being used to clock the
serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

Cc/T2 T2CON.1 Timer or counter select (Timer 2)

0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).
CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX

if EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows
or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK
= 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Figure 2-13. T2CON: Timer/Counter 2 Control Register.

“baud rate generator” which are selected by bits in
T2CON as shown in Table 2-2.

Table 2-2. Timer 2 Operating Modes

RCLK + TCLK CP/RL2Z TR2 MODE
0 0 1 16-bit auto-reload
0 1 1 16-bit capture
1 X 1 baud rate generator

X X 0 (off)

In the capture mode there are two options which are
selected by bit EXEN2 in T2CON. If EXEN2 = 0, then
Timer 2 is a 16-bit timer or counter which upon overflow-
ing sets bit TF2, the Timer 2 overflow bit, which can be
used to generate an interrupt. If EXEN2 = 1, then Timer
2 still does the above, but with the added feature that a
1-t0-0 transition at external input T2EX causes the cur-
rent value in the Timer 2 registers, TL2 and TH2, to be
captured into registers RCAP2L and RCAP2H, respec-
tively. (RCAP2L and RCAP2H are new Special Function
Registers inthe 8052.) In addition, the transition at T2EX
causes bit EXF2in T2CON to be set, and EXF2, like TF2,
can generate an interrupt.

The capture mode is illustrated in Figure 2-14.

In the auto-reload mode there are again two options,
which are selected by bit EXEN2 in T2CON. If EXEN2 =
0, then when Timer 2 rolls over it not only sets TF2 but
also causes the Timer 2 registers to be reloaded with the
16-bit vaiue in registers RCAP2L and RCAP2H, which
are preset by software. If EXEN2 = 1, then Timer 2 still
does the above, but with the added feature that a 1-to-0
transition at external input T2EX will also trigger the 16-
bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 2-15.

The baud rate generator mode is selected by RCLK = 1
and/or TCLK = 1. It will be described in conjunction with
the serial port.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and
receive simultaneously. It is also receive-buffered,
meaning it can commence reception of a second byte
before a previously received byte hasbeenread fromthe
receive register. (However, if the first byte still hasn't
been read by the time reception of the second byte is
complete, one of the bytes will be lost). The serial port
receive and transmit registers are both accessed at

2-13

CHAPTER 2
8051 Family Architecture

cA2=0
TL2 TH2
o— o ! (8-BITS) (8-BITS) TF2
1 CT2=1 [
T2 PIN | CONTROL
TR2
CAPTURE -_-_-D_> TIMER 2
INTERRUPT
l RCAP2L] RCAP2H I

TRANSITION
I— DETECTOR

T2EX PIN —>1 _ ; } EXF2 '—

L
CONTROL
EXEN2

Figure 2-14. Timer 2 in Capture Mode

Special Function Register SBUF. Writing to SBUF loads
the transmit register, and reading SBUF accesses a
physically separate receive register.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD
outputs the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at 1/12 the
oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (LSB
first), and a stop bit (1). On receive, the stop bit goes into
RB8 in Special Function Register SCON. The baud rate
is variable.

Mode 2: 11 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (LSB
first), a programmable 9th data bit, and a stop bit (1). On
transmit, the 9th data bit (TB8 in SCON) canbe assigned
the value of 0 or 1. Or, for example, the parity bit (P, in the
PSW) could be moved into TB8. On receive, the 9th data
bit goes into RB8 in Special Function Register SCON,
while the stop bit is ignored. The baud rate is program-
mable to either 1/32 or 1/64 the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (LSB
first), a programmable 9th data bit and a stop bit (1). In
fact, Mode 3 is the same as Mode 2 in all respects except
the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruc-
tion that uses SBUF as a destination register. Reception
is initiated in Mode 0 by the condition Rl = 0 and
REN = 1. Reception is initiated in the other modes by the
incoming start bit if REN = 1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiproces-
sor communications. In these modes, 9 data bits are
received. The 9th one goes into RB8. Then comes a stop
bit. The port can be programmed such thatwhen the stop
bit is received, the serial port interrupt will be activated
only if RB8 = 1. This feature is enabled by setting bit SM2
in SCON. A way to use this feature in multiprocessor
systems is as follows.

When the master processor wants to transmit a block of
datato one of several slaves, it first sends out an address
byte which identifies the target slave. An address byte
differs fromadata byte inthat the Sthbitis 1 in an address
byte and 0 in a data byte. With SM2 = 1, no slave will be
interrupted by a databyte. An address byte, however, will
interrupt all slaves, so that each slave can examine the
received byte and see if it is being addressed. The
addressed slave will clear its SM2 bit and prepare to
receive the data bytes that willbe coming. The slaves that
weren't being addressed leave their SM2s set and go on
about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used
to check the validity of the stop bit. In a Mode 1 reception,
if SM2 = 1, the receive interrupt will not be activated
unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status is the Special Function
Register SCON, shown in Figure 2-16. This register
contains notonly the mode selection bits, but also the 9th
data bit for transmit and receive (TB8 and RB8), and the
serial port interrupt bits (T1 and R1).

2-14

CHAPTER 2
8051 Family Architecture

I
C2=0

TL2 TH2
- H (8-BITS) (8-BITS)
cr2=1 1
T2 PIN ——————1 I CONTROL
TR2
RELOAD
[RCAP2L l RCAP2H ‘
TRANSITION J TF2
I-— DETECTOR
. TIMER 2
INTERRUPT

[- EXF2
T2EX PIN —51 -_ i

CONTROL

EXEN2
Figure 2-15. Timer 2 in Auto-Reload Mode
(MSB) (LSB)

|3M0|SM1|3M2|REN\TBS|RBS[Tl]Rl]

where SM0, SM1 specify the serial port mode, as follows: « TB8 is the 9th data bit that will be transmitted in
modes 2 and 3. Set or clear by software as
SMO SM1 Mode Description Baud Rate desired.

+«RB8 in modes 2 and 3, is the 9th data bit that was

0 0 0 shiftregister ‘osc./12 received. In mode 1, if SM2 = 0, RBS is the
0 1 1 8-bit UART variable stop bit that was received. In mode 0, RB8 is
1 0 2 9-bit UART ‘osc./64 not used.
or * Tl is transmit interrupt flag. Set by hardware at
‘osc./32 the end of the 8th bit time in mode 0, or at
1 1 3 9-bit UART variable the beginning of the stop bit in the other
«SM2 enables the multiprocessor communication modes, in any serial transmission. Must be
feature in modes 2 and 3. In mode 2 or 3, if SM2 cleared by software.
is set to 1 then RI will not be activated if the *RI is receive interrupt flag. Set by hardware at
received 9th data bit (RB8) is 0. In mode 1, if the end of the 8th bit time in mode 0, or
SM2 = 1 then Rl will not be activated if a valid halfway through the stop bit time in the other
stop bit was not received. In mode 0, SM2 should modes, in any serial reception (except see
be 0. SM2). Must be cleared by software.

« REN enables serial reception. Set by software to
enable reception..Clear by software to disable
reception.
Figure 2-16. SCON: Serial Port Control Register

Baud Rates The baud rate in Mode 2 depends on the value of bit

. o SMOD in Special Function Register PCON. If SMOD = 0
The baud rate in Mode 0 is fixed: (which is its value on reset), the baud rate is 1/64 the
oscillator frequency. If SMOD = 1, the baud rate is 1/32

Oscillator Frequency the oscillator frequency.

Mode 0 Baud Rate =
12 Mode 2 Baud Rate =

23&0 e x (Oscillator Frequency)

2-15

CHAPTER 2
8051 Family Architecture

In the 8051, the baud rates in Modes 1 and 3 are
determined by the Timer 1 overflow rate. In the 8052,
these baud rates can be determined by Timer 1, or by
Timer 2, or by both (one for transmit and the other for
receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the
baud rates in Modes 1 and 3 are determined by the Timer
1 overflow rate and the value of SMOD as follows:

Modes 1,3 ssmop
Baud Rate = 35 x (Timer 1 Overflow Rate)

The Timer 1 interrupt should be disabled in this applica-
tion. The Timer itself can be configured for either “timer”
or “counter” operation, and in any of its 3 running modes.
Inthe most typical applications, it is configured for “timer”
operation, in the auto-reload mode (high nibble of TMOD
= 0010B). In that case, the baud rate is given by the
formula

Oscillator Frequency
12x[256—(TH1)]

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD =
0001B), and using the Timer 1 interrupt to do a 16-bit
software reload.

MOD
Modes 1, 3 Baud Rate =2S32 X

Figure 2-17 lists various commonly used baud rates and
how they can be obtained from Timer 1

Timer 1
Baud Rate ‘osc SMOD C/T Mode Reload
Value
Mode 0 MAX: 1MHz 12 MHz X X X X
Mode 2 MAX: 375K 12 MHz 1 X X X
Modes 1, 3: 62.5K 12 MHz 1 0 2 FFH
19.2K 11.059 MHz 1 (o] 2 FDH
9.6K 11.059 MHz 0 o] 2 FDH
48K 11.059 MHz 0 0 2 FAH
2.4K 11.059 MHz 0 0 2 F4H
1.2K 11.059 MHz 0 0 2 E8H
137.5K 11.986 MHz 0 (o] 2 1DH
110 6 MHz 0 0 2 72H
110 12 MHz 0 0 1 FEEBH

Figure 2-17. Timer 1 Generated Commonly Used
Baud Rates

Using Timer 2 to Generate Baud Rates

Inthe 8052, Timer 2 is selected as the baud rate genera-
tor by setting TCLK and/or RCLK in T2CON (Figure 2-
13). Note thenthe baud rates fortransmit and receive can
be simultaneously different. Setting RCLK and/or TCLK
puts Timer 2 into its baud rate generator mode, as shown
in Figure 2-18.

Note: OSC. freq. Is divided by 2, not 12.

TIMER 1
OVERFLOW

cz=0 — —
> 1 ° (8-BITS) (8-BITS)
Ccr2=1 }
T2 PIN-—————-—j] CONTROL AX CLOCK
TR2
RELOAD
RCAP2L RCAP2H J TX CLOCK
TRANSITION
l DETECTOR
[| “TIMER 2"
— O
T2EX PIN \. ‘.’T 1 EXF2 INTERRUPT
.
CONTROL

EXEN2

Z—--Nolo Avallabllity of Additional External Interrupt

Figure 2-18. Timer 2 in Baud Rate Generator Mode

CHAPTER 2
8051 Family Architecture

The baud rate generator mode is similar to the auto-
reload mode, in that a rollover in TH2 causes the Timer
2registers to be reloaded with the 16-bit value inregisters
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by
Timer 2's overflow rate as follows:

Timer 2 Overflow Rate
16

Modes 1, 3 Baud Rate =

“counter” operation. In the most typical applications, it is
configured for “timer” operation (C/T2=0).“Timer"opera-
tion is a little different for Timer 2 when it’s being used as
a baud rate generator. Normally as a timer it would
increment every machine cycle (thus at 1/1 the oscillator
frequency). As a baud rate generator, however, it incre-
ments every state time (thus at 1/2 the oscillator fre-
quency). Inthat case the baud rate is given by the formula

Oscillator Frequency
32x[65536—(RCAP2H, RCAP2L)]

Modes 1, 3
Baud Rate =

where (RCAP2H, RCAP2L) is the content of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer.

Timer2 as abaud rate generator is shownin Figure 2-18.
This Figure is valid only if RCLK + TCLK = 1 in T2CON.
Note that a rollover in TH2 does not set TF2, and will not
generate an interrupt. Therefore, the Timer 2 interrupt
does not have to be disabled when Timer 2 is in the baud
rate generator mode. Note too, that if EXEN2 is set, a 1-
to-0 transition in T2EX will set EXF2 but will not cause a
reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus
when Timer 2 is in use as a baud rate generator, T2EX
can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1)
in “timer” function in the baud rate generator mode, one
should not try to read or write TH2 or TL2. Under these
conditions the Timer is being incremented every state
time, and the results of a read or write may not be
accurate. The RCAP registers may be read, but shouldn’t
be written to, because a write might overlap a reload and
cause write and/or reload errors. Turnthe Timer off (clear
TR2) before accessing the Timer 2 or TCAP registers, in
this case.

More About Mode 0

Serial data enters and exits through RXD. TXD outputs
the shift clock. 8 bits are transmitted/received: 8 data bits
(LSB first). The baud rate is fixed at 1/12 the oscillator
frequency.

Figure 2-19 shows a simplified functional diagram of the
serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal at S6P2 also loads a 1 into the 9th bit position of
the transmit shift register and tells the TX Control block to
commence a transmission. The internal timing is such
that one full machine cycle will elapse between “write to
SBUF,” and activation of SEND.

SEND enables the output of the shift register to the
alternate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, S1 and S2. At
S6P2 of every machine cycle inwhich SEND is active, the
contents of the transmit shift register are shifted to the
right one position.

As data bits shift out to the right, zeros come in from the
left. When the MSB of the data byte is at the output
position of the shift register, then the 1 that was initially
loaded into the 9th position, is just to the left of the MSB,
and all positions to the left of that contain zeros. This
condition flags the TX Control block to do one last shift
and then deactivate SEND and set T1. Both of these
actions occur at S1P1 of the 10th machine cycle after
“write to SBUF.”

Reception is initiated by the condition REN = 1 and Rl =
0. At S6P2 of the next machine cycle, the RX Control unit
writes the bits 11111110 to the receive shift register, and
in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output
function line of P3.1. SHIFT CLOCK makes transitions at
S3P1and S6P1 of every machine cycle. At S6P2 of every
machine cycle in which RECEIVE is active, the contents
of the receive shift register are shifted to the left one
position. The value that comes in from the right is the
value that was sampled at the P3.0 pin at S5P2 of the
same machine cycle.

As data bits come in fromthe right, 1s shift out to the left.
When the 0 that was initially loaded into the rightmost
position arrives at the leftmost position in the shift regis-
ter, it flags the RX Control block to do one last shift and
load SBUF. At S1P1 of the 10th machine cycle after the
write to SCON that cleared RI, RECEIVE is cleared and
Rl is set.

2-17

CHAPTER 2
8051 Family Architecture

8051 INTERNAL BUS

WRITE &
RXD

TO
SBUF
L pSa P3.0ALT
~dcL S8UF OuTPUT
SHIET FUNCTION
ZERO DETECTOR
—
START SHIFT]
TX CONTROL
S6 TXCLOCK 4 SEND
SERIAL
PORT/ PaTvx;?u
INTERRUPT SHIFT ouTPLT
CLOCK FUNCTION
RxcLock R! RECEIVE

RXCONTROL g e7

REN
A START 41 1111110
RXD

P3.0ALT
INPUT
FUNCTION
Sa S5S§I 515253 54 85 86 I S1529354 95 56 l s 52 S\'vl%555‘5‘5? 5354 55 56 | 515253545556 |5!575]5!Sﬁ§5 i S1525) 84 SﬁSGl S15253545556 | $15251545556 lSISZS!Sl S5 56 l st
ALE
[IWRITE TO SBUF
L
SEND sep2 [1
SHIFT n 1 1 n n n n 1
RXD (DATAOUT)L_D0_ X o1 X ©7 X B3 X Ba X o6 X ®6 T o7] TRANSMIT
TXD (SHIFTCLOCK) h 1
Tl S3P1™ S6P1 T
[LWRITE TO SCON (CLEARRI)
Rl 1 —
RECEIVE 1
[RECEIVE
SHIFT JU JU JL n_ n n In]

RXD (DATA IN) nbo nD1 GD? GDS UD‘ GDS GDG 307

issP2
TXD (SHIFT CLOCK)

Figure 2-19. Serial Port Mode 0

2-18

CHAPTER 2
8051 Family Architecture

More About Mode 1

Ten bits transmitted (through TXD), or received (through
RXD): a start bit (0), 8 data bits (LSB first), and a stop bit
(1). Onreceive, the stop bit goes into RB8in SCON. Inthe
8051 the baud rate isdetermined the the Timer 1 overflow
rate. In the 8052 it is determined either by the Timer 1
overflow rate, or the Timer 2 overflow rate, or both (one
for transmit and the other for receive).

Figure 2-20 shows a simplified functional diagram of the
serial portin Mode 1, and associated timings for transmit
and receive.

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal also loads a 1 into the 9th bit position of the transmit
shift register and flags the TX Control unitthat a transmis-
sion is requested. Transmission actually commences at
S1P1 of the machine cycle following the next rollover in
the divide-by-16 counter. (Thus, the bit times are syn-
chronized to the divide-by-16 counter, not to the “write to
SBUF” signal.)

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that.

As data bits shift outto the right, zeros are clockedinfrom
the left. When the MSB of the data byte is at the output
position of the shift register, then the 1 that was initially
loaded into the 9th position is just to the left of the MSB,
and all positions to the left of that contain zeroes. This
conditionflags the TX Controlunit to do one last shift and
then deactivate SEND and set Tl. This occurs at the 10th
divide-by-16 rollover after “write to SBUF.”

Reception is initiated by a detected 1-to-0 transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into
16ths. At the 7th, 8th, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The
value accepted is the value that was seenin at least 2 of
the 3 samples. Thisis done for noise rejection. Ifthe value
accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for
another 1-to-0 transition. This is to provide rejection of
false start bits. If the start bit proves valid, it is shifted into

the input shift register, and reception of the rest of the
frame will proceed.

As data bits come in from the right, 1s shift out to the left.
When the start bit arrives at the leftmost position in the
shift register, (which in mode 1 is a 9-bit register), it flags
the RX Control block to do one last shift, load SBUF and
RB8, and set RI. The signal to load SBUF and RB8, and
to set RI, will be generated if, and only if, the following
conditions are met at the time the final shift pulse is
generated.

1) RI=0, and
2) Either SM2 = 0, or the received siop bit = 1

If either of these two conditions is not met, the received
frame is irretrievably lost. If both conditions are met, the
stop bit goes into RB8, the 8 data bits go into SBUF, and
Rlis activated. At this time, whetherthe above conditions
are met or not, the unit goes back to looking for a 1-to-0
transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On trans-
mit, the 9th data bit (TB8) can be assigned the value of
0 or 1. On receive, the 9th data bit goes into RB8 in
SCON. The baud rate is programmabile to either 1/32 or
1/64 the oscillatorfrequency in mode 2. Mode 8 may have
a variable baud rate generated from either Timer 1 or 2
depending on the state of TCLK and RCLK.

Figures 21a and b show a functional diagram of the serial
port in modes 2 and 3. The receive portion is exactly the
same as in mode 1. The transmit portion differs from
mode 1 only in the Sth bit of the transmit shift register.

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal also loads TB8 into the Sth bit position of the
transmit shift register and flags the TX Control unit that a
transmission is requested. Transmission commences at
S1P1 of the machine cycle following the next rollover in
the divide-by-16 counter. (Thus, the bit times are syn-
chronized to the divide-by-16 counter, not to the “write to
SBUF” signal.)

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a 1 (the stop bit) into
the 9th bit position of the shift register. Thereafter, only
zeroes are clocked in. Thus, as data bits shift out to the

CHAPTER 2
8051 Family Architecture

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW
<
WRITE
TO
SBUF
TXD
ZERO DETECTOR
v SHIFT
1 START DATA
TX CONTROL
———m—- TXCLOCK 1 SEND
SERIAL
g PORT
INTERRUPT
RCLK —— ——
+16
SAMPLE
1-TO-0 RX CLOCK RI LOAD }—>
TRANSITION| START SBUF
DETECTOR RX CONTROL SHIFT
1FFH
B
DETECTOR |
INPUT SHIFT REG.
(9BITS)
RXD
READ
SBUF
8051 INTERNAL BUS
@
[eLoCK) Il 1 1 I 1 1 1 1 1 i |
[WRITE TO SBUF
—__SEND EE—
DATA ‘“siP1 1 TRANSMIT
SHIFT | 1 1 | | | | i 1
TXD \ /D0 X" D1 X D2 X D3 Y04 X D5 Y D6 X_D7Y
T START BIT STOP BIT
+16 RESET
JRx cLocky At 1 n | 1 1L 1 n ¥ Ji} 1

RXD —————graRT e/ 50X 51 X B2 (B Y bt (D05 X B8 X__o7 STOPBIT
RECEIVE (BITDETECTOR SAMPLE TIMES M m i) M
SHIFT A 1 A ht A 1 0 1 0 1
Rl]

Figure 2-20. Serial Port Mode 1
(TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.)

2-20

CHAPTER 2
8051 Family Architecture

RECEIVE

8051 INTERNAL BUS

WRITE
TXD
PHASE 2 CLOCK
(2 fosc)
IT HIFT __/
START SngNB SHIFT ATA
TXCONTROL ——
16 TXCLOCK TI SEND
SERIAL
PORT
INTERRUPT
(SMOD IS PCON.7) n
SAMPLE
1-TO-0 RX Rl LOAD
ITRANSITION START CLOCK SBUF
DETECTOR RXCONTROL g7
1FFH
BIT I t
DETECTOR | 3
INPUT SHIFT REG.
(9 BITS)
RXD
READ
SBUF
8051 INTERNAL BUS
TX
(CLOCK 1 1 1 1 N 1 0 L)) .
| WRITE TO SBUF
SEND
DATA ‘s1P1 [— | —
= A 4 Ll 1 | 1 1 1 1 TRANSMIT
TXD \STARTSTY/ TG YD1 X D2 X D3 X _Da X D5 X _D6 X_D7 X _IB8 /stopPBIT
Tl
STOR BIT GEN 1 -
16 RESET J
ACLOCK § oLt | 1 il 1 1 L f\ | | 1
RXD g S ETECTORLSTART 81T/~ 50 BT X5z B3 X 54 05 X 06 X 57 X et Tgyop
SAMPLE TIMES m ™ T S T
SHIFT _A] 1 1 1 1 _Jwﬂl 0 1 N
RI

Figure 2-21a. Serial Port Mode 2

2-21

CHAPTER 2
8051 Family Architecture

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW

XD

ZERO DETECTOR

START SHIFT pata

TX CONTROL
TXCLOCK 1 SEND
SERIAL

PORT

INTERRUPT
+16
SAMPLE
1.-T0-0 RXCLOCK RI LOAD b—»
TRANSITION START SBUF
DETECTOR RX CONTROL SHIFT
1FFH

BIT
DETECTOR

A4
INPUT SHIFT REG.
(9BITS)

RXD

TX
CLOCK; I I} L1 | i\ 1 1 1\ N 1
LWRITE TO SBUF
—_SEND —
DATA “stP1
SHIFT Jil 1 1] 1 1 1L 1 1 TRANSMIT
TXD \A%TSYTBE X BT XT02 Y 03 D4 X_D5 X _D6 J_D7 X YBE JsToPBIT
Tl
STOP BITGEN 1 T
+ 16 RESET
NCLOCK At 0 I | I I | L I |)
RXD g D ETECTORLSTART 8T/ B0 X 6T Bz YB3 X B¢ Y 05X 6 Y o7 X _®¥ Tsrop
RECEIVE SAMPLE TIMES ML . I Mo BIT
SHIFT I 1 1 1 | 1 1L 1 1 1
RI —

Figure 2-21b. Serial Port Mode 3
(TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.)

2-22

CHAPTER 2
8051 Family Architecture

right, zeroes are clocked in from the left. When TB8 is at
the output position of the shift register, then the stop bit
is just to the left of TB8, and all positions to the left of that
contain zeroes. This condition flags the TX Control unitto
do one last shift and then deactivate SEND and set Tl.
This occurs at the 11th divide-by-16 rollover after “write
to SBUF.”

Reception is initiated by a detected 1-to-0 transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written to the input shift
register.

Atthe 7th, 8th, and 9th counter states of each bit time, the
bit detector samples the value of RXD. The value ac-
cepted is the value that was seen in at least two of the
three samples. If the value accepted during the first bit
time is not 0, the receive circuits are reset and the unit
goes back to looking for another 1-to-0 transition. If the
start bit proves valid, it is shifted into the input shift
register, and reception of the rest of the frame will
proceed.

As data bits come in from the right, 1s shift out to the left.
When the start bit arrives at the leftmost position in the
shift register (which in modes 2 and 3 is a 9-bit register),
it flags the RX Control block to do one last shift, load
SBUF and RB8, and set RI. The signal to load SBUF and
RB8, and to set RI, will be generated if, and only if, the
following conditions are met at the time the final shift
pulse is generated:

1) Rl=0, and
2) Either SM2 = 0, or the received data bit = 1

If either of these conditions is not met, the received frame
is irretrievably lost, and Rl is not set. If both conditions are
met, the received 9th data bit goes into RB8, and the first
8 data bits go into SBUF. One bit time later, whether the
above conditions were met or not, the unit goes back to
looking for a 1-to-0 transition at the RXD input.

Note that the value of the received stop bitis irrelevant to
SBUF, RB8, or RI.

INTERRUPTS

The 8051 provides five interrupt sources. The 8052
provides six. These are shown in Figure 2-22.

The External Interrupts INTO and INT1 can each be either
level-activated or transition-activated, depending on bits
ITO and IT1 in Register TCON. The flags that actually
generate these interrupts are bits IEO and IE1 in TCON.
When an external interrupt is generated, the flag that
generated it is cleared by the hardware when the service
routine is vectored to only if the interrupt was transition-

activated. If the interrupt was level-activated, then the
external requesting source is what controls the request
flag, rather than the on-chip hardware.

INTO

TFO

iINTERRUPT
SOURCES

INT1

TF1

T
RI

) e
EXF2 (8052 ONLY) J

Figure 2-22. 8051 Family Interrupt Sources

(MSB) (LSB)
[EA | X]ETz | ES|ET1 IEX1 ‘ETO |EXO!

Function

disables all interrupts. If EA = 0, no
interrupt will be acknowledged. If
EA = 1, each interrupt source is in-
dividually enabled or disabled by
setting or clearing its enable bit.
reserved

enables or disables the Timer 2
overflow or capture interrupt. If
ET2 = 0, the Timer 2 interrupt is
disabled.

enables or disables the Serial Port
interrupt. If ES = 0, the Timer 1
interrupt is disabled.

enables or disables the Timer 1
Overflow interrupt. If ET1 = 0, the
Timer 1 interrupt is disabled.
enables or disables External
Interrupt 1. If EX1 = 0, External
Interrupt 1 is disabled.

enables or disables the Timer 0
Overflow Interrupt. If ETO = 0, the
Timer O Interrupt is disabled.
enables or disables External
Interrupt 0. If EXO = 0, External
Interrupt 0 is disabled.

Symbol Position
EA IE.7

- IE.6
ET2 IE.5

ES IE.4

ET1 IE.3

EX1 IE.2

ETO IE.1

EX0 IE.O

Figure 2-23. IE: Interrupt Enable Register

2-23

CHAPTER 2
8051 Family Architecture

The Timer 0 and Timer 1 Interrupts are generated by TF0
and TF1, which are set by a rollover in their respective
timer/counter registers (except see page 2-12 for Timer
0inmode 3). When atimerinterrupt is generated, the flag
thatgenerateditis cleared by the on-chip hardware when
the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR
of Rland Tl. Neither of these flags is cleared by hardware
when the service routine is vectored to. In fact, the
service routine will normally have to determine whether
it was Rlor Tl that generated the interrupt, and the bit will
have to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
cleared by hardware when the service routine is vectored
to. In fact, the service routine may have to determine
whether it was TF2 or EXF2 that generated the interrupt,
and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or
cleared by software, with the same result asthough it had
been set or cleared by hardware. That is, interrupts can
be generated or pending interrupts can be canceled in
software.

Each of these interrupt sources can be individually en-
abled or disabled by setting or clearing a bit in Special
Function Register IE (Figure 2-23). Note that IE contains
also a global disable bit, EA, which disables all interrupts
at once.

Priority Level Structure

Each interrupt source can also be individually pro-
grammed to one of two priority levels by setting or
clearing a bit in Special Function Register IP (Figure 2-
24). A low-priority interrupt can itself be interrupted by a
high-priority interrupt, but not by another low-priority
interrupt. A high-priority interrupt can't be interrupted by
any other interrupt source.

(MSB) (LSB)
| x | x [p12] Ps [PT1]Px1]PTo]Px0]
Symbol Position Function

— IP.7 reserved

—_ IP.6 reserved

PT2 IP.5 defines the Timer 2 interrupt priority
level. PT2 = 1 programs it to the
higher priority level.

PS IP.4 defines the Serial Port interrupt
priority level. PS = 1 programs it to
the higher priority level.

PT1 IP.3 defines the Timer 1 interrupt priority
level. PT = 1 programs it to the
higher priority level.

PX1 IP.2 defines the External Interrupt 1
priority level. PX1 = 1 programs it to
the higher priority level.

PTO IP:1 defines the Timer 0 interrupt priority
level. PTO = 1 programs it to the
higher priority level.

PXo0 IP.0 defines the External Interrupt 0

priority level. PX0 = 1 programs it to
the higher priority level.

Figure 2-24.IP: Interrupt Priority Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is
serviced. If requests of the same priority level are re-
ceived simultaneously, an internal polling sequence
determines which request is serviced. Thus within each
priority level there is a second priority structure deter-
mined by the polling sequence, as follows:

Source Priority Within Level

IEO (highest)
TFO
IE1
TF1
Rl + Tl
TF2 + EXF2

ok WD

(lowest)

Note that the “priority within level” structure is only used
to resolve muiltiple requests of the same priority level.

........ c1 + c2 + c3 4 ca + Ccs
IsspP2l S6 |
........ l I | l | I I) 1) 1 N 1
B\ ¢ T
- ~ y —~— Y
€ 1 INTERRUPTS LONG CALLTO INTERRUPT ROUTINE
ARE POLLED INTERRUPT
INTERRUPT INTERRUPT VECTOR ADDRESS
GOES LATCHED
ACTIVE

This is the fastest possible response when C2 is the final cycle of an
instruction other than RETI or an access to IE or IP.

Figure 2-25. Interrupt Response Timing Diagram

2-24

CHAPTER 2
8051 Family Architecture

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every ma-
chine cycle. The samples are polled during the following
machine cycle. If one of the flags was in a set condition
at S5P2 of the preceding cycle, the polling cycle will find
it and the interrupt system will generate an LCALL to the
appropriate service routine, provided this hardware-
generated LCALL is not blocked by any of the following
conditions:

1. Aninterrupt of equal or higher priority levelis already
in progress.

2. The current (polling) cycle is not the final cycle in the
execution of the instruction in progress.

3. The instruction in progress is RETI or any access to
the IE or IP registers.

Any of these three conditions will block the generation of
the LCALL to the interrupt service routine. Condition 2
ensures that the instruction in progress will be completed
before vectoring to any service routine. Condition 3
ensures that if the instruction in progress is RET| or any
access to IE or IP, then at least one more instruction will

be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle,
and the values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if an
interrupt flag is active but not being responded to forone
of the above conditions, if the flag is not still active when
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not
remembered. Every polling cycle is new.

The polling cycle/LCALL sequence isillustrated in Figure
2-25.

Note that if an interrupt of higher priority level goes active
prior to S5P2 of the machine cycle labeled C3 in Figure
2-25, then in accordance with the above rules it will be
vectored to during C5 and C6, without any instruction of
the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request
by executing hardware-generated LCALL to the appro-
priate servicing routine. In some cases it also clears the
flag that generated the interrupt, and in other cases it
doesn't. It never clears the Serial Port or Timer 2 flags.
This has to be done in the user’s software. It clears an
external interrupt flag (IEO or IE1) only if it was transition-
activated. The hardware-generated LCALL pushes the

contents of the Program Counter onto the stack (but it
does not save the PSW) and reloads the PC with an
address thatdepends on the source of the interrupt being
vectored to, as shown below.

Vector

Source Address
1EO 0003H
TFO 000BH
IE1 0013H
TFi 001BH
RI+TI 0023H
TF2 + EXF2 002BH

Execution proceeds from that location until the RETI
instruction is encountered. The RET! instruction informs
the processor that this interrupt routine is no longer in
progress, then pops the top two bytes fromthe stack and
reloads the Program Counter. Execution of the inter-
rupted program continues from where it left off.

Note that a simple RET instruction would also have
returned execution to the interrupted program, but it
would have left the interrupt control system thinking an
interrupt was still in progress.

External Interrupts

The external sources can be programmed to be level-
activated or transition-activated by setting or clearing bit
IT1 orITO in Register TCON. If ITx = 0, external interrupt
x is triggered by a detected low at the INTx pin. If ITx =1,
external interrupt x is edge-triggered. In this mode if
successive samples of the INTx pin show a high in one
cycle and alowinthe nextcycle, interrupt request flag IEx
in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillator periods to ensure sampling. If the
external interrupt is transition-activated, the external
source has to hold the request pin high for at least one
cycle, and then hold it low for at least one cycle to ensure
thatthe transitionis seen so that interrupt request flag IEx
will be set. IEx will be automatically cleared by the CPU
when the service routine is called.

If the external interrupt is level activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate
the request before the interrupt service routine is com-
pleted, or else another interrupt will be generated.

2-25

CHAPTER 2
8051 Family Architecture

Response Time

The TNTO and TNTT levels are inverted and latched into
IEO and IE1 at S5P2 of every machine cycle. The values
are not actually polled by the circuitry until the next
machine cycle. If a request is active and conditions are
right for it to be acknowledged, a hardware subroutine
call to the requested service routine will be the next
instruction to be executed. The call itself takes two
cycles. Thus, a minimum of three complete machine
cycles elapse between activation of an external interrupt
request and the beginning of execution of the first instruc-
tion of the service routine. Figure 2-25 shows interrupt
response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If an
interrupt of equal or higher priority level is already in
progress, the additional wait time obviously depends on
the nature of the other interrupt’s service routine. If the
instruction in progress is not in its final cycle, the addi-
tional wait time cannot be more than 3 cycles, since the
longest instructions (MUL and DIV) are only 4 cycles
long, and if the instruction in progress is RETI or an
accessto [Eor IP, the additional wait time cannot be more
than 5 cycles (a maximum of one more cycle to complete
the instruction in progress, plus 4 cycles to complete the
next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is
always more than 3 cycles and less than 9 cycles.

SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution
with very little software overhead. As previously noted,
an interrupt request will not be responded to while an
interrupt of equal priority level is still in progress, nor will
it be responded to after RETI until at least one other
instruction has been executed. Thus, once an interrupt
routine has been entered, it cannot be re-entered until at
least one instruction of the interrupted program is exe-
cuted. One way to use this feature for single-step opera-
tion is to program one of the external interrupts, e.g.,
INTO, to be level-activated. The service routine for the
interrupt will terminate with the following code:

JNB P3.2% WAIT HERE UNTIL INTO GOES
HIGH

JB P3.2$;NOW WAIT HERE UNTIL IT GOES
LOW

RETI ;GO BACK AND EXECUTE ONE
INSTRUCTION

Ifthe INTO pin, whichis also the P3.2 pin, is held normally
low, the CPU will go right into the External Interrupt 0
routine and stay there until INTO is pulsed (from low to
highto low). Thenitwill execute RETI, go back to the task

program, execute one instruction, and immediately re-
enter the External Interrupt 0 routine to await the next
pulsing of P3.2. One step of the task program is executed
each time P3.2 is pulsed.

RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

A reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods), while
the oscillator is running. The CPU responds by executing
an internal reset. It also configures the ALE and PSEN
pins as inputs. (They are quasi-bidirectional.) The inter-
nal reset is executed during the second cycle in which
RST is high and is repeated every cycle until RST goes
low. It leaves the internal registers as follows:

Register Content
PC 0000H
ACC 00H
B 00H
PSW 00H
SP 07H
DPTR 0000H
PO-P3 OFFH
IP (8051) XXX00000B
IP (8052) XX000000B
IE (8051) 0XX00000B
IE (8052) 0X000000B
TMOD 00H
TCON 00H
T2CON (8052 only) 00H
THO 00H
TLO 00H
TH1 00H
TL1 00H
TH2 O00H
TL2 00H
RCAP2H (8052 only) 00H
RCAP2L (8052 only) 00H
SCON 00H
SBUF Indeterminate
PCON (NMOS) OXXXXXXXB
PCON (CMOS) 0XXX0000B

The internal RAM is not affected by reset. When VCC is
turned on, the RAM content is indeterminate unless the
part is returning from a reduced power mode of
operation.

Power-On Reset

An automatic reset can be obtained when VCC is turned
on by connecting the RST pin to VCC through a 10uF
capacitor and to VSS through an 8.2 k resistor, providing
the VCC rise time does not exceed a millisecond and the

2-26

CHAPTER 2
8051 Family Architecture

oscillator start-up time does not exceed 10 ms. This
power-on reset circuit is shown in Figure 2-26. When
power comes on, the current drawn by RST commences
to charge the capacitor. The voltage at RST is the
difference between VCC and the capacitor voltage, and
decreases from VCC as the capacitor charges. The
larger the capacitor, the more slowly VRST decreases.
VRST must remain above the lower threshold of the
Schmitt Trigger long enough to effect a complete reset.
The time required is the oscillator start-up time, plus 2
machine cycles.

POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical, the
NMOS and CMOS versions provide power-reduced
modes of operation.

NMOS Power Reduction Mode

To save power when using the NMOS device, VCC may
be reduced to zero while the on-chip RAM is saved
through a backup supply connected to the RST pin. After
saving relevant data in RAM, the user enables the
backup power supply to the RST pin before VCC falls
below its operating limit. When powerreturns, the backup
supply must stay on long enough to accomplish a reset;
it then can be removed and normal operation resumed.

vcc

+

10ut

i
I

vcc

8051

RST
82K §

vss

il

Figure 2-26. Power on Reset Circuit

CMOS Power Reduction Modes

CMOS versions have two power-reducing modes, Idle
and Power Down. Backup power is supplied duringthese
operations through VCC. Figure 2-27 shows the internal
circuitry which implements these features. In the Idle
mode (IDL = 1), the oscillator continues to run and the
Interrupt, Serial Port, and Timer blocks continue to be
clocked, but the clock signal is gated off to the CPU. In
Power Down (PD = 1), the oscillator is frozen. The Idle
and Power Down modes are activated by setting bits in
Special Function Register PCON. The address of this
register is 87H. Figure 2-28 details its contents.

o]

XTAL2 = xTAL1
L INTERRUPT,
osc SERIAL PORT,
TIMER BLOCKS
CLOCK
GEN.
0
PD
cPU
ibL
Figure 2-27. Idle and Power Down Hardware
(MSB) (LSB)
[sMob] — [— | — [GF1 [GFo [PD [iDL |
Symbol Position = Name and Function
SMOD PCON.7 Double Baud rate bit. When set to
a1 and Timer 1 is used to
generate baud rate, and the Serial
Port is used in modes 1, 2, or 3.
— PCON.6 (Reserved)
— PCON.5 (Reserved)
— PCON.4 (Reserved)
GF1 PCON.3 General-purpose flag bit.
GF2 PCON.2 General-purpose flag bit.
PD PCON.1 Power Down bit. Setting this bit
activates power down operation.
IDL PCON.0 Idle mode bit. Setting this bit

activates idle mode operation.

If 1s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is (0XXX0000).

Figure 2-28. PCON: Power Control Register

2-27

CHAPTER 2
8051 Family Architecture

Idle Mode

Aninstructionthat sets PCON. 0 causes thatto be the last
instruction executed before going into the Idle mode. In
the Idle mode, the internal clock signal is gated off to the
CPU, but not to the Interrupt, Timer, and Serial Port
functions. The CPU status is preserved inits entirety: the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, and all other registers maintain their data
during Idle. The port pins hold the logical states they had
atthetime Idle was activated. ALE and PSEN hold at logic
high levels.

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PCON.0to be cleared by
hardware, terminatingthe Idle mode. The interrupt willbe
serviced, and following RET! the next instruction to be
executed will be the one following the instruction that put
the device into Idle.

The flag bits GFO and GF1 can be used to give an
indication if an interrupt occurred during normal opera-
tion or during an Idle. For example, an instruction that
activates Idle can also set one or both flag bits. When Idle
is terminated by an interrupt, the interrupt service routine
can examine the flag bits.

The other way of terminating the Idle mode is with a
hardware reset. Since the clock oscillator is still running,
the hardware reset needs to be held active for only two
machine cycles (24 oscillator periods) to complete the
reset.

Power Down Mode

Aninstructionthat sets PCON.1 causesthatto be the last

instruction executed before going into the Power Down
mode. Inthe Power Down mode, the on-chip oscillator is
stopped. With the clock frozen, all functions are stopped,
but the on-chip RAM and Special Function Registers are
held. The port pins output the values held by their
respective SFRs. ALE and PSEN output lows.

The only exit from Power Down is a hardware reset.
Reset redefines all the SFRs, but does not change the
on-chip RAM.

In the Power Down mode of operation, VCC can be
reduced to minimize power consumption. Care must be
taken, however, to ensure that VCC is not reduced before
the Power Down mode is invoked, and that VCC is
restored to its normal operating level, before the Power
Down mode is terminated. The reset that terminates
Power Down also frees the oscillator. The reset should
not be activated before VCC is restored to its normal
operating level, and must be held active long enough to
allow the oscillator to restart and stabilize (normally less
than 10 msec).

MORE ABOUT THE ON-CHIP
OSCILLATOR

NMOS Versions

The on-chip oscillator circuitry for the NMOS members of
the 8051 Family is a single stage linear inverter (Figure
2-29), intended for use as a crystal-controlled, positive
reactance oscillator (Figure 2-30). In this application the
crystal is operated in its fundamental response mode as
aninductive reactance in parallel resonance with capaci-
tance external to the crystal.

TO INTERNAL
TIMING CKTS

XTAL2

e

Figure 2-29. On-Chip Oscillator Circuitry in the NMOS Versions of the 8051 Family

2-28

CHAPTER 2
8051 Family Architecture

TO INTERNAL
TIMING CKTS

t Q3, a4
Vss 3

=28l OQxmau----(

QUARTZ CRYSTAL
OR CERAMIC RESONATOR

Figure 2-30. Using the NMOS On-Chip Oscillator

The crystal specifications and capacitance values (C1
and C2 in Figure 2-33) are not critical. 30 pF canbe used
in these positions at any frequency with good quality
crystals. A ceramic resonator can be used in place of the
crystal in cost-sensitive applications. When a ceramic
resonatoris used, C1 and C2 are normally selected to be
of somewhat higher values, typically, 47 pF. The manu-
facturer of the ceramic resonator should be consulted for
recommendations on the values of these capacitors.

Vee
8051
EXTERNAL
E XTAL2
OSCILLATOR
SIGNAL 1 XTAL1
L8
GATE Vss
WITH
TOTEM-POLE
OUTPUT =

Figure 2-31. Driving the NMOS 8051 Family Parts
with an External Clock Source

To drive the NMOS parts with an external clock source,
apply the external clock signal to XTAL2, and ground
XTAL1, as shown in Figure 2-31. A pull-up resistor may
be used (to increase noise margin), but is optional if VOH
of the driving gate exceeds the VIH,, specification of
XTAL2.

CMOS

The on-chip oscillator circuitry for the 80C51, shown in
Figure 2-32, consists of a single-stage linear inverter
intended for use as crystal-controlled, positive reactance
oscillator in the same manner as the NMOS parts.

However, there are some important differences.

One difference is that the 80C51 is able to turn off its
oscillator under software control (by writing a 1 to the PD
bit in PCON). Another difference is that in the 80C51 the
internal clocking circuitry is drivenby the signal at XTAL1,
whereas in the NMOS versions it is by the signal at
XTAL2.

The feedback resistor Rf in Figure 2-32 consists of
paralleled n- and p-channel FETs controlled by the PD
bit, such that Rf is opened when PD = 1. The diodes D1
and D2, which act as clamps to VCC and VSS, are
parasitic to the Rf FETs.

2-29

CHAPTER 2
8051 Family Architecture

TO INTERNAL
TIMING CKTS T

i .

D1
0 Ry

XTAL1 G ‘93;. AA- E XTAL2

D2

Vss

Figure 2-32. On-Chip Osclllator Circuitry in the CMOS Versions of the 8051 Family

TO INTERNAL 7D
TIMING CKTS

VWA~

a—1 QUARTZ CRYSTAL

{0l OR CERAMIC
] a [RESONATOR

Figure 2-33. Using the CMOS On-Chip Oscillator

2-30

CHAPTER 2
8051 Family Architecture

The oscillator can be used with the same external com-
ponents as the NMOS versions, as shown in Figure 2-33.
Typically, C1 = C2 = 30 pF when the feedback element
is a quartz crystal, and C1 = C2 = 47 pF when a ceramic
resonator is used.

To drive the CMOS parts with an external clock source,
apply the external clock signal to XTAL1, and leave
XTAL2 floating as shown in Figure 2-34.

The reason for this change from the way the NMOS part
is driven canbe seen by comparing Figure 2-29 and 2-32.
In the NMOS devices the internal timing circuits are
driven by the signal at XTAL2. In the CMOS devices the
Internal timing circuits are driven by the signal at XTAL1.

80C51

NC —{ XTAL2
EXTERNAL
XTAL1
OSCILLATOR
SIGNAL T
-I-—‘ Vss

CMOS GATE
Figure 2-34. Driving the CMOS 8051 Family Parts with an
External Clock Source

INTERNAL TIMING

Figures 2-35 through 2-38 show when the various strobe
Art cirnale ara rlarkad intarnally Tha firm ires An nnat

and port signals are clocked internally. The figures do not

show rise and fall times of the signals, nor do they show
propagation delays between the XTAL2 signal and
events at other pins.

Rise andfalltimes are dependent onthe external loading
that each pin must drive. They are often taken to be
something in the neighborhood of 10nsec, measured
between 0.8 Vand 2.0 V.

Propagation delays are different for different pins. For a
given pin they vary with pin loading, temperature, VCC,
and manufacturing lot. If the XTAL2 waveformis taken as
the timing reference, propagation delays may vary from
25 to 125 nsec.

The AC Timings section of the data sheets do not
reference any timing to the XTAL2 waveform. Rather,
they relate the critical edges of control and input signals
to each other. The timings published in the data sheets
include the effects of propagation delays under the
specified test conditions.

80C51BH PIN DESCRIPTIONS
VCC: Supply voltage.
VSS: Circuit ground potential.

Port 0: Port 0 is an 8-bit open drain bidirectional 1/0 port.
As an open drain output port it can sink 8 LS TTL loads.
Port 0 pins that have 1s written to them float, and in that
state will function as high-impedance inputs. Port 0 is
also the multiplexed low-order address and data bus
during accesses to external memory. In this application
it uses strong internal pull-ups when emitting 1s. Port 0
also emits code bytes during program verification. Inthat
application, external pull-ups are required.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal
pull-ups. The port 1 output buffers can sink/source four
LS TTL loads. Port 1 pins that have 1s written to them are
pulled high by the internal pull-ups, and in that state can
be used as inputs. As inputs, Port 1 pins that are exter-
nally being pulled low will source current (lIL, on the data -
sheet) because of the internal pull-ups.

In the 8052, pins P1.0 and P1.1 also serve the alternate
functions of T2 and T2EX. T2 is the Timer 2 external
input. T2EX is the input throughwhich a Timer 2 “capture”
is triggered.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal
pull-ups. The Port 2 output buffers can sink/source four
LS TTL loads. Port 2 emits the high-order address byte
during accesses to external memory that use 16-bit
addresses. In this application it uses the strong internal
pull-ups when emitting 1s. Port 2 also receives the high-
order address and control bits during 87C5! program-
ming and verification, and during program verification in
the 80C518H.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal
pull-ups. It also serves the functions of various special
features of the 8051 Family, as listed below:

Port Pin Alternate Function

P3.0 RXD (serial input port)

P3.1 TXD (serial output port)

P3.2 INTO (external interrupt 0)

P3.3 INTT (external interrupt 1)

P3.4 TO (Timer 0 external input)

P3.5 T1 (Timer 1 external input)

P3.6 WR (external data memory write
strobe)

P3.7 RD (external data memory read
strobe)

The Port 3 output buffers can source/sink four LS TTL
loads.

2-31

CHAPTER 2
8051 Family Architecture

RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable is the output pulse
for latching the low byte of the address during accesses
to external memory. ALE is emitted at a constant rate of
1/6 of the oscillator frequency, for external timing or
clocking purposes, even when there are no accesses to
external memory. (However, one ALE pulse is skipped
during each access to external Data Memory.) This pinis
also the program pulse input (PROG) during EPROM
programming.

PSEN: Program Store Enable is the read strobe to
external Program Memory. When the device is executing
out of external Program Memory, PSEN is activated twice
each machine cycle (except that two PSEN activations
are skipped during accesses to external Data Memory).
PSEN is not activated when the device is executing out of
internal Program Memory.

EA/VPP: When EA is held high the CPU executes out of
internal Program Memory (unless the Program Counter
exceeds OFFFH in_the 80C51BH, or 1FFFH in the
80C52T2). Holding EA low forces the CPU to execute out
of external memory regardless of the Program Counter
value. Inthe 80C31BH and 80C32T2, EA must be exter-
nally wired low. In the 87C51, this pin also receives the
12.75 V programming supply voltage (VPP) during
EPROM programming.

XTAL1: Output to the inverting oscillator amplifier
(CMOS devices only).
XTAL2: Input from the inverting oscillator amplifier

(CMOS devices only).

2-32

CHAPTER 2
8051 Family Architecture

\ STATE 1
P1| P2

\STATE 2| STATE 3| STATE 4 | STATE §
prip2ipPilP2iPilpP2lpPilp2

STATE 6
Pl P2

STATE 1 ' STATE 2
P1ipr2lpiip2

ALE:

PSEN:

PO:

P2:

DATA DATA DATA
SAMPLED _>1 SAMPLED 4>1 l¢— SAMPLED
PCL PCL PcL |
LI out L. out T out
PCH OUT PCH OUT PCH OUT

Figure 2-35. External Program Memory Fetches

ALE:

PO:

P2:

STATE 4| STATE 5 | STATE 6 | STATE 1| STATE 2 | STATE 3 | STATE 4| STATE §
pilr2lpilpr2lpPi]p2

P1| P2

pilpalPilp2lpPilp2lPripP2

- [[TUUTTUUUTUU U UL

DPL OR RI FLOAT

DATA SAMPLED : IS EXTERNAL
FLOAT

PCL OUT IF
PROGRAM MEMORY

A -

ourt

PCH OR
P2 SFR

DPH OR P2 SFR OUT

PCH OR
P2 SFR

Figure 2-36. External Data Memory Read Cycle

2-33

CHAPTER 2
8051 Family Architecture

STATE 4 | STATE 5| STATE 6 | STATE 1 ISTATE 3 I STATE 2 | STATE 4 I STATE 5
pilp2lPilp2lpilp2lpilp2lpiir2l Pilp2lPtlip2iprp2

e UV

ALE:
WR: PCL OUT IF
PROGRAM MEMORY
: IS EXTERNAL
DPL OR Ri pCL] £
PO: ———— T our DATA OUT ouT —
PCH OR PCH OR
P2
P2 SFR DPH OR P2 SFR OUT P2 SFR

Figure 2-37. External Data Memory Write Cycle

;snrs 4 l STATE 5 | STATE 6 | STATE 1 ‘ STATE 2 l STATE 3 | STATE 4 | STATE 5
prlp2ipilp2lpPilpr2lpPiler2lPilpP2lPilpP2ipPilpP2|epr|p2

PO, P1 PO, P1
INPUTS SAMPLED:
P2, P3, RST P2, P3, RST
MOV PORT, SRC: OLD DATA NEW DATA
SERIAL PORT
SHIFT CLOCK
(MODE 0)
—»{ |« RXD PIN SAMPLED RXD SAMPLED —»| f—

Figure 2-38. Port Operation

2-34

CHAPTER 3

Programmer’s Guide

Memory Organization
Program Memory
Data Memory
Direct and Indirect Address Area

Special Function Registers
Contents of SFRs After Power-On
SFR Memory Map
Program Status Word (PSW)
Power Control Register (PCON)

Interrupts

Interrupt Enable Register (IE)

Assigning Higher Priority Levels

Interrupt Priority Register (IP)

Timer/Counter Control Register (TCON)
Timer/Counter Mode Control Register (TMOD)

Timer Set-Up
Timer/Counter 0
Timer/Counter 1

Timer/Counter 2 Control Register (T2CON)
Timer/Counter 2 Set-Up

Serial Port Control Register (SCON)
Serial Port Set-Up
Generating Baud Rates

3-16

3-17
3-17
3-18

CHAPTER 3 bu |
Programmer's Guide

INTRODUCTION

This chapter presents a programmer’s reference guide to the “core” architecture of the 8051 Family. The description of
the “8051” in this chapter applies to all 8051 Family members. The term “8052” is used to refer to an 8051AH with a
double amount of ROM and RAM, and an extra timer called Timer 2. Itis also included in this “‘core” discussion because
its features are often found in other enhanced 8051 Family members. (See Members of the Family in Chapter 1).

MEMORY ORGANIZATION

Program Memory

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64K
bytes long. The lower 4K (8K for the 8052) may reside on-chip. Figure 3-1 shows a map of the 8051 program memory;
Figure 3-2 shows a map of the 8052 program memory.

FFFF FFFF
\
60K
BYTES
EXTERNAL
64K
————— OR ———> BYTES
EXTERNAL
1000
AND
OFFF
4K BYTES J
INTERNAL
0000 - 0000

Figure 3-1. The 8051 Program Memory

3-1

CHAPTER 3
Programmer's Guide

FFFF FFFF
\
56 K
BYTES
EXTERNAL
84K
OR ——J BYTES
EXTERNAL
2000
AND
1FFF
8K BYTES S
INTERNAL
0000 0000

Figure 3-2. The 8052 Program Memory

Data Memory

The 8051 can address up to 64K bytes of external Data Memory. The “MOVX” instruction is used to access the external
data memory. (Refer to the 8051 Family Instruction Set, in Chapter 4.)

The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs).
The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing
(MOV @ Ri). Figure 3-3 shows the 8051 and the 8052 Data Memory organization.

3-2

CHAPTER 3
Programmer's Guide

FF

OFFF

INTERNAL

SFRs
DIRECT
ADDRESSING
ONLY

7F

DIRECT &
INDIRECT

ADDRESSING

FF

FF

64K
BYTES
EXTERNAL

a. The 8051

FFFF
INTERNAL

INDIRECT

ADDRESSING ONLY
80H TO FFH

.

SFRs

DIRECT
ADDRESSING
ONLY

>—AND-—>

DIRECT &

INDIRECT
ADDRESSING

b. The 8052

Figure 3-3. Data Memory

64K
BYTES
EXTERNAL

3-3

CHAPTER 3
Programmer's Guide

Indirect Address Area

Figure 3-3b the SFRs and the indirect address RAM have the same addresses (80H-OFFH). Nevertheless, they are two separate
areas and are accessed in two different ways.

For example, the instruction

MOV 80H, #0AAH

writes OAAH to Port 0, which is one of the SFRs, and the instruction
MOV RO, #80H
MOV @RO, #0BBH

writes OBBH in location 80H of the data RAM. Thus, after execution of both of the above instructions Port 0 will
contain OAAH and location 80 of the RAM will contain 0OBBH.

Direct and Indirect Address Area

The 128 bytes of RAM which can be accessed by both directand indirect addressing can be divided into three segments as listed below
and shown in Figure 3-4.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register
bank 0. To use the other register banks the user must select them in the software. Each register bank contains eight 1-byte registers,
0 through 7.

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the
first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be
intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this
segment can be directly addressed (0-7FH).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their
addresses, ie. O to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to
as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer
has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

3-4

CHAPTER 3

Programmer's Guide

18

10

€ 8 Bytes -
6F
67
SCRATCH
5F
PAD
57
AREA
aF
a7
3F
37
... TF | 2F BIT
ADDRESSABLE
0... 27 SEGMENT
3 1F
2 17 REGISTER
1 OF BANKS
0 o7

Figure 3-4. 128 Bytes of RAM Direct and Indirect Addressable

3-5

CHAPTER 3
Programmer's Guide

SPECIAL FUNCTION REGISTERS

Table 3-1 contains a list of all the SFRs and their addresses.

Comparing Table 3-1 and figure 3-5 shows that all of the SFRs that are byte-and bit-addressable are located on the first column in
Figure 3-5.

Table 3-1

Symbol Name Address
*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word 0DOH
SP Stack Pointer 81H

DPTR Data Pointer 2 Bytes
DPL Low Byte 82H
DPH High Byte 83H
*PO Port 0 80H
*P1 Port 1 90H
*P2 Port 2 0AOH
*P3 Port 3 0BOH
*IP Interrupt Priority Control 0B8H
*IE Interrupt Enable Control 0A8H
TMOD Timer/Counter Mode Control 89H
*TCON Timer/Counter Control 88H
*+T2CON Timer/Counter 2 Control 0C8H
THO Timer/Counter 0 High Byte 8CH
TLO Timer/Counter O Low Byte 8AH
TH1 Timer/Counter 1 High Byte 8DH
TLA Timer/Counter 1 Low Byte 8BH
+TH2 Timer/Counter 2 High Byte OCDH
+TL2 Timer/Counter 2 Low Byte 0CCH
+RCAP2H T/C 2 Capture Reg. High Byte 0CBH
+RCAP2L T/C 2 Capture Reg. Low Byte 0CAH
*SCON Serial Control 98H
SBUF Serial Data Buffer 99H
PCON Power Control 87H

* = Bit addressable
+ = 8052 only

CHAPTER 3
Programmer's Guide

What Do the SFRs Contain Just After Power-on or a Reset?

Table 3-2 lists the contents of each SFR after power-on or a hardware reset.

Table 3-2. Contents of the SFRs After Reset

Register Value in Binary
*ACC 00000000
*B 00000000
*PSW 00000000
SP 00000111
DPTR
DPH 00000000
DPL 00000000
*PO 11111111
*P1 11111111
*P2 11111111
*P3 11111111
*IP 8051 XXX00000,
8052 XX000000
*IE 8051 0XX00000,
8052 0X000000
TMOD 00000000
*TCON 00000000
*+T2CON 00000000
THO 00000000
TLO 00000000
THA 00000000
TL1 00000000
+TH2 00000000
+TL2 00000000
+RCAP2H 00000000
+RCAP2L 00000000
*SCON 00000000
SBUF Indeterminate
PCON NMOS OXXXXXXX
CMOS 0XXX0000
X = Undefined
* = Bit Addressable
+ = 8052 only

3-7

CHAPTER 3
Programmer's Guide

SFR Memory Map

F8
FO
E8
EO
D8
DO
Cs
co
B8
BO
A8
AO
98
90
88
80

8 Bytes

ACC

PSW

T2CON

RCAP2L

RCAP2H

TL2

TH2

SCON

SBUF

P1

TCON

TMOD

TLO

TLA

THO

TH1

PO

SP

DPL

DPH

PCON

T
Bit
Addressable

Figure 3-5. Memory Map

FF
F7
EF
E7
DF
D7
CF
c?
BF
B7
AF
A7
9F
97
8F
87

3-8

CHAPTER 3
Programmetr's Guide

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit
is provided for quick reference. For more detailed information refer to Architecture, Chapter 2.

PSW: Program Status Word. Bit Addressable.

[cv [ac [Fo [mst [mo [ov [— [P |
CY PSW.7 Carry Flag.
AC PSW.6 Auxiliary Carry Flag.
FO PSW.5 Flag O available to the user for general purpose.
RS1 PSW 4 Register Bank selector bit 1 (SEE NOTE 1).
RSO PSW.3 Register Bank selector bit 0 (SEE NOTE 1).
ov PSW.2 Overflow Flag.
— PSW.1 Not implemented, reserved for future use.*
P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of
‘1’ bits in the accumulator.
NOTE:
1. The value presented by RS0 and RS1 selects the corresponding register bank.
RS1 RSO Register Bank Address

0 0 0 00H-07H

0 1 1 08H-OFH

1 0 2 10H-17H

1 1 3 18H-1FH

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

PCON: Power Control Register. Not Bit Addressable.

[smoo | — [— [— [e [aro [PD | iDL |

SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled
when the Serial Port is used in modes 1, 2, or 3.

-— Not implemented, reserved for future use.*

—_ Not implemented, reserved for future use.*

— Not implemented, reserved for future use.”

GF1 General purpose flag bit.

GFO General purpose flag bit.

PD Power Down bit. Setting this bit activates Power Down operation in the 80C51BH. (Available only in
CMOS).

IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80C51BH. (Available only in CMOS).
If 1s are written to PD and IDL at the same time, PD takes precedence.

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

CHAPTER 3
Programmer's Guide

Interrupts

In order to use any of the interrupts in the 8051 Family, the following three steps must be taken.
1. Set the EA (enable all) bit in the IE register to 1.

2. Set the corresponding individual interrupt enable bit in the IE register to 1.
3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

Interrupt Vector
Source Address

IEO 0003H

TFO 000BH

IE1 0013H

TF1 001BH

RI&TI 0023H

TF2 & EXF2 002BH

In addition, for external interrupts, pins INTO and INT1 (P3.2 and P3.3) must be set to 1, and depending on whether
the interrupt is to be level or transition activated, bits ITO or IT1 in the TCON register may need to be set to 1.

ITx = 0 level activated

Il

ITx = 1 transition activated

IE: Interrupt Enable Register. Bit Addressable.
If the bit is O, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

| A | — | er2 [es | ent | ex1 [eto | Exo |

IE.7 Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt
source is individually enabled or disabled by setting or clearing its enable bit.

—_— IE.6 Not implemented, reserved for future use.*
ET2 IE.5 Enable or disable the Timer 2 overflow or capture interrupt (8052 only).

ES IE.4 Enable or disable the serial port interrupt.

ET1 IE.3 Enable or disable the Timer 1 overflow interrupt.
EX1 IE.2 Enable or disable External Interrupt 1.

ETO IE.1 Enable or disable the Timer O overflow interrupt.

EXO0 IE.0 Enable or disable External Interrupt O.

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

3-10

CHAPTER 3
Programmer's Guide

Assigning Higher Priority to One or More Interrupts

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1.

Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

Priority Within Level
Priority within level is only to resolve simultaneous requests of the same priority level.
From high to low, interrupt sources are listed below:

IEO

TFO

1IE1

TF1

RI or TI
TF2 or EXF2

IP: Interrupt Priority Register. Bit Addressable

If the bit is 0, the corresponding interrupt has a lower priority; if the bit is 1 the corresponding interrupt has a higher priority.

[— [— [ez [ps [pn [Px1t | PTo | Pxo |
— IP. 7 Not implemented, reserved for future use.*

— IP. 6 Not implemented, reserved for future use.*

PT2 IP. 5 Defines the Timer 2 interrupt priority level (8052 only).

PS IP. 4 Defines the Serial Port interrupt priority level.

PT1 IP. 3 Defines the Timer 1 interrupt priority level.

PX1 IP. 2 Defines External Interrupt 1 priority level.

PTO IP. 1 Defines the Timer O interrupt priority level.

PX0 IP. 0 Defines the External Interrupt O priority level.

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

CHAPTER 3
Programmer's Guide

TCON: Timer/Counter Control Register. Bit Addressable

| 771 | Rt | tr0 | TRo [Bt | m | 1O [1m0 |

TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hard-
ware as processor vectors to the interrupt service routine.

TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF.

TFO TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hard-
ware as processor vectors to the service routine.

TRO TCON. 4 Timer O run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.

IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected.
Cleared by hardware when interrupt is processed.

IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

1EO TCON. 1 External Interrupt O edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

ITO TCON. O Interrupt O type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

TMOD: Timer/Counter Mode Control Register. Not Bit Addressable

GATE | /T | M1 | Mo | GATE | /T | M1 [Mo |
AN - AN ~ J
TIMER 1 TIMER 0
GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERX will run only while INTx pin is high
(hardware control). When GATE = 0, TIMER/COUNTERXx will run only while TRx = 1 (software

control).
C/T Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Coun-
ter operation (input from Tx input pin).
M1 Mode selector bit. (NOTE 1)
MO Mode selector bit. (NOTE 1)
NOTE 1:
M1 MO Operating Mode
0 0 0 13-bit Timer (8048 Family compatible)
0 1 1 16-bit Timer/Counter
1 0 2 8-bit Auto-Reload Timer/Counter
1 1 3 (Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Tim(_ar 0
control bits, THO is an 8-bit Timer and is controlied by Timer 1 control bits.
1 1 3 (Timer 1) Timer/Counter 1 stopped.

CHAPTER 3
Programmer's Guide

TIMER SET-UP

Tables 3-3 through 3-6 give some values for TMOD which can be used to set up Timer O in different modes.

It is assumed that only one timer is being used at a time. If it is desired to run Timer 0 and 1 simultaneously, in any mode, the value
in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 3-5 and 3-6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER,
then the value that must be loaded into TMOD is 69H (09H from Table 3-3 Ored with 60H from Table 3-6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different
point in the program by setting bit TRx (in TCON) to 1.

Timer/Counter 0

As a Timer:
Table 3-3
TMOD
MODE TIMER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 00H 08H
1 16-bit Timer O1H 09H
2 8-bit Auto-Reload 02H O0AH
3 two 8-bit Timers 03H OBH
As a Counter:
Table 3-4
TMOD
MODE COUNTER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 04H OCH
1 16-bit Timer 05H ODH
2 8-bit Auto-Reload 06H OEH
3 one 8-bit Counter 07H OFH
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TRO in the software.
2. The Timer is turned ON/OFF by the 1 to O transition on INTO (P3.2) when TRO = 1
(hardware control).

3-13

CHAPTER 3
Programmer's Guide

Timer/Counter 1

As a Timer:
Table 3-5
TMOD
MODE TIMER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 00H 80H
1 16-bit Timer 10H 90H
2 8-bit Auto-Reload 20H AOH
3 does not run 30H BOH
As a Counter:
Table 3-6
TMOD
MODE COUNTER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 40H COH
1 16-bit Timer 50H DOH
2 8-bit Auto-Reload 60H EOH
3 not available — —
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.
2. The timer is turned ON/OFF by the 1-to-0 transition on INT1 (P3.3) when TR1 = 1

(hardware control).

3-14

CHAPTER 3
Programmer's Guide

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE.
8052 Only

[7F2 | ExF2 | RCLK | TOLK | ExEN2 | TR2 | /T2 | CP/AL2

TF2

EXF2

RCLK

TLCK

EXEN2

TR2

C/T2

CP/R12

T2CON. 7

T2CON. 6

T2CON. 5

T2CON. 4

T2CON. 3

T2CON. 2
T2CON. 1

T2CON. 0

Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when
either RCLK = lor CLK = 1

Timer 2 external flag set when either a capture or reload is caused by a negative transition on

T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU
to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.

Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overflow to be used for the receive
clock.

Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
transmit clock in modes 1 & 3. TCLK = O causes Timer 1 overflows to be used for the
transmit clock.

Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of
negative transition on T2EX if Timer 2 is not being used to clock the Serial Port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

Software START/STOP control for Timer 2. A logic 1 starts the Timer.

Timer or Counter select.

0 = Internal Timer. 1 = External Event Counter (falling edge triggered).

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer 2 overflows or

negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1,
this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow.

3-15

CHAPTER 3
Programmer's Guide

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit.
Therefore, bit TR2 must be set separately to turn the Timer on.

As a Timer:
Table 3-7
T2CON
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)

16-bit Auto-Reload O00H 08H
16-bit Capture 01H 09H
BAUD rate generator receive & ’

transmit same baud rate 34H 36H
receive only 24H 26H
transmit only 14H 16H

As a Counter:
Table 3-8
TMOD
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)
16-bit Auto-Reload 02H OAH
16-bit Capture 03H 0BH

NOTES:

1. Capture/Reload occurs only on Timer/Counter overflow.

2. Capture/Reload occurs on Timer/Counter overflow and a 1 to O transition on T2EX
(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

3-16

CHAPTER 3
Programmer's Guide

SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE.

[sMo | swi | sv2 [mren | t88 | RBB | TI | RI |
SMO SCON. 7 Serial Port mode specifier. (NOTE 1).

SM1 SCON. 6 Serial Port mode specifier. (NOTE 1).

SM2 SCON. 5 Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2 is set
to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1
then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0.
(See Table 9).
REN SCON. 4 Set/Cleared by software to Enable/Disable reception.
TBS8 SCON. 3 The 9th bit that will be transmiited in modes 2 & 3. Set/Cleared by software.
2

RB8 SCON. 2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit
that was received. In mode 0, RB8 is not used.

TI SCON. 1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode O, or at the
beginning of the stop bit in the other modes. Must be cleared by software.
RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway
through the stop bit time in the other modes (except see SM2). Must be cleared by software.
NOTE 1:
SMO0 SM1 Mode Description Baud Rate
0 0 0 SHIFT REGISTER Fosc./12
0 1 1 8-Bit UART Variable
1 0 2 9-Bit UART Fosc./64 OR
Fosc./32
1 1 3 9-Bit UART Variable
Serial Port Set-up
Table 3-9
MODE SCON SM2 VARIATION
(1) ;g: Single Processor
Environment
2 90H (SM2 = 0)
3 DOH
? %";‘_1 Multiprocessor
Environment
2 BOH -
3 FOH (SM2 = 1)

3-17

CHAPTER 3
Programmer's Guide

GENERATING BAUD RATES

Serial Port in Mode 0

Mode 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of
the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Osc Freq
12

Baud Rate =

Serial Port in Mode 1

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only).

Using Timer/Counter 1 to Generate Baud Rates: .
For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

K x Oscillator Freq.

Baud Rate =
aud Rate = o o x 256 — (TH1)]

If SMOD
If SMOD

0, then K

1.
1, then K = 2. (SMOD is the PCON register).

']
[

Most of the time the user knows the baud rate and needs to know the reload value for TH1.
Therefore, the equation to calculate TH1 can be written as:

K x Osc Freq.
TH1 = 256 - ——————
6 384 x baud rate

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In
this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL
PCON, #80H). The address of PCON is 87H.

Using Timer/Counter 2 to Generate Baud Rates:

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this
chapter. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

Timer 2 Overflow Rate

Baud Rate =
Y 16

And if it is being clocked internally the baud rate is:

Osc Freq
32 x [65536 — (RCAP2H, RCAP2L)]

Baud Rate =

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

Osc Freq

RCAP2H, RCAP2L = -—
CAP2 65536 32 x Baud Rate

3-18

CHAPTER 3
Programmer's Guide

Serial Port in Mode 2

The baud rate is fixed in this mode and is Y4, or Ve, of the oscillator frequency depending on the value of the SMOD
bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.

SMOD = 1, Baud Rate = 3, Osc Freq.
SMOD = 0, Baud Rate = !/, Osc Freq.

To set the SMOD bit: ORL PCON, #80H. The address of PCON is 87H.

Serial Port in Mode 3

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

3-19

CHAPTER 4

Instruction Set 4-1
Program Status Word 4-1
Addressing Modes 4-1
Arithmetic Instructions 4-2
Logical Instructions 4-3
Data Transfers 4-4
Boolean Instructions 4-6
Jump Instructions 4-8
Instruction Set Summary 4-10

Instruction Definitions 4-14

CHAPTER 4 bu |
Instruction Set

INTRODUCTION

All members of the 8051 Family execute the same instruc-
tion set, optimized for 8-bit control applications. The
instruction set provides a variety of fast addressing modes
for accessing the internal RAM to facilitate byte opera-
tions on small data structures. It provides extensive sup-
port for one-bit variables as a separate data type, allowing
direct bit manipulation in control and logic systems that
requrie Boolean processing. An overview of the instruc-
tion set is presented below, with a brief description of how
certain instructions might be used.

PROGRAM STATUS WORD

The Program Status Word (PSW) contains several
status bits that reflect the current state of the CPU. The
PSW, shown in Figure 4-1, resides in SFR space. It con-
tains the Carry bit, the Auxiliary Carry (for BCD oper-
ations), the two register bank select bits, the Overflow
flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a
Carry bit in arithmetic operations, also serves as the
“Accumulator” for a number of Boolean operations.

The bits RSO and RS1 are used to select one of the four
register banks shown in Figure 1-7 . A number of instruc-
tions refer to these RAM locations as RO through R7.
The selection of which of the four banks is being re-
ferred to is made on the basis of the bits RSO and RS1
at execution time.

The Parity bit reflects the number of 1s in the Accumu-
lator: P = 1 if the Accumulator contains an odd num-
ber of 1s, and P = 0 if the Accumulator contains an
even number of 1s. Thus the number of 1s in the Accu-
mulator plus P is always even.

Two bits in the PSW are uncommitted and may be used
as general purpose status flags.

ADDRESSING MODES

The addressing modes in the 8051 Family instruction set are as
follows:

Direct Addressing

In direct addressing the operand is specified by an 8-bit
address field in the instruction. Only internal Data
RAM and SFRs can be directly addressed.

Indirect Addressing

In indirect addressing the instruction specifies a register
which contains the address of the operand. Both inter-
nal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be RO or
R1 of the selected register bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the
16-bit ‘‘data pointer” register, DPTR.

[exPaclro]rsifrsofov]] r]

PSW 7
CARRY FLAG RECEIVES CARRY OUT
FROM BIT 1 OF ALU OPERANDS

PSW 6

AUXILIARY CARRY FLAG RECEIVES
CARRY OUT FROM BIT 1 OF
ADDITION OPERANDS

PSW 5
GENERAL PURPOSE STATUS FLAG

PSW 0

PARITY OF ACCUMULATOR SET

BY HARDWARE TO 1 IF IT CONTAINS
AN ODD NUMBER OF 1S, OTHERWISE
IT IS RESET TO 0

t——— PSW 1
USER DEFINABLE FLAG

PSW 2
OVERFLOW FLAG SET BY
ARITHMETIC OPERATIONS

PSW 4
REGISTER BANK SELECT BIT 1

PSW 3
REGISTER BANK SELECT BIT 0

Figure 4-1. PSW (Program Status Word) Register in 8051 Family Devices

4-1

CHAPTER 4
Instruction Set

Register Instructions

The register banks, containing registers R0 through R7,
can be accessed by certain instructions which carry a
3-bit register specification within the opcode of the in-
struction. Instructions that access the registers this way
are code efficient, since this mode eliminates an address
byte. When the instruction is executed, one of the eight
registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank
select bits in the PSW.

Register-Specific Instructions

Some instructions are specific to a certain register. For
example, some instructions always operate on the Ac-
cumulator, or Data Pointer, etc., so no address byte is
needed to point to it. The opcode itself does that. In-
structions that refer to the Accumlator as A assemble
as accumulator-specific opcodes.

immediate Constant

(7]

The value of a constant can follow the opcode in Pro-
gram Memory. For example,

MOV A, #100
loads the Accumulator with the decimal number 100.

The same number could be specified in hex digits as
64H.

Indexed Addressing

Only Program Memory can be accessed with indexed
addressing, and it can only be read. This addressing
mode is intended for reading look-up tables in Program
Memory. A 16-bit base register (either DPTR or the
Program Counter) points to the base of the table, and
the Accumulator is set up with the table entry number.
The address of the table entry in Program Memory is
formed by adding the Accumulator data to the base
pointer.

Another type of indexed addressing is used in the “case
jump” instruction. In this case the destination address
of a jump instruction is computed as the sum of the
base pointer and the Accumulator data.

ARITHMETIC INSTRUCTIONS

The menu of arithmetic instructions is listed in Table 4-1.
The table indicates the addressing modes that can be
used with each instruction to access the <byte> oper-
and. For example, the ADD A, <byte> instruction can
be written as:

ADD A,7FH (direct addressing)
ADD A,@RO (indirect addressing)
ADD A,R7 (register addressing)
ADD A,#127 (immediate constant)

Table 4-1. A List of the 8051 Family Arithmetic Instructions

Mnemonic Operation Addressing Modes _Er).(ecution

Dir | Ind | Reg | Imm ime (1s)
ADD A, <byte> A = A + <byte> X X X X 1
ADDC A, <byte> A=A+ <byte> +C X X X X 1
SUBB A,<byte> A=A - <byte> - C X X X X 1
INC A A=A+1 Accumulator only 1
INC <byte> <byte> = <byte>+1 | X | X | x | 1
INC DPTR DPTR = DPTR + 1 Data Pointer only 2
DEC A A=A-1 Accumulator only 1
DEC _ <byte> <byte> = <byte> -1 | X | x | x | 1
MUL AB B:A = BxA ACC and B only 4
DIV AB g : 'MnI)EJA[fAB/]B] ACC and B only 4
DA A Decimal Adjust Accumulator only 1

42

CHAPTER 4
Instruction Set

The execution times listed in Table 4-1 assume a 12MHz
clock frequency. All of the arithmetic instructions exe-
cute in 1 us except the INC DPTR instruction, which
takes 2 us, and the Multiply and Divide instructions,
which take 4 ps.

Note that any byte in the internal Data Memory space
can be incremented or decremented without going
through the Accumulator.

One of the INC instructions operates on the 16-bit
Data Pointer. The Data Pointer is used to generate
16-bit addresses for external memory, so being able to
increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator
by the data in the B register and puts the 16-bit product
into the concatenated B and Accumulator registers.

The DIV AB instruction divides the Accumulator by
the data in the B register and leaves the 8-bit quotient
in the Accumulator, and the 8-bit remainder in the B
register.

Oddly enough, DIV AB finds less use in arithmetic
“divide” routines than in radix conversions and pro-
grammable shift operations. An example of the use of
DIV AB in a radix conversion will be given later. In

shift operations, dividing a number by 2n shifts its n
bits to the right. Using DIV AB to perform the division
completes the shift in 4 us and leaves the B register
holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic opera-
tions. In BCD arithmetic, ADD and ADDC instruc-
tions should always be followed by a DA A operation,
to ensure that the result is also in BCD. Note that DA
A will not convert a binary number to BCD. The DA
A operation produces a meaningful result only as the
second step in the addition of two BCD bytes.

LOGICAL INSTRUCTIONS

Table 4-2 shows the list of 8051 Family logical instructions.
The instructions that perform Boolean operations
(AND, OR, Exclusive OR, NOT) on bytes perform the
operation on a bit-by-bit basis. That is, if the Accumu-
lator contains 00110101B and <byte> contains
01010011B, then

ANL A, <byte>

will leave the Accumulator holding 00010001B.

Table 4-2. A List of the 8051 Family Logical Instructions

Addressing Modes Execution

Mnemonic Operation Dir [ind | Reg | 1mm Time (us)
ANL A, <byte> A = A .AND. <byte> X X X X 1
ANL <byte>,A <byte> = <byte> .AND. A X 1
ANL <byte>,#data <byte> = <byte> .AND. #data X 2
ORL A, <byte> A = A .OR. <byte> X X X X 1
ORL <byte>,A <byte> = <byte> .OR. A X 1
ORL <byte>,#data <byte> = <byte> .OR. #data X 2
XRL A, <byte> A = A XOR. <byte> X X X X 1
XRL <byte>,A <byte> = <byte> .XOR. A X 1
XRL <byte>,#data <byte> = <byte> .XOR. #data X 2
CRL A A = O0H Accumulator only 1
CPL A A = .NOT.A Accumulator only 1
RL A Rotate ACC Left 1 bit Accumulator only 1
RLC A Rotate Left through Carry Accumulator only 1
RR A Rotate ACC Right 1 bit Accumulator only 1
RRC A Rotate Right through Carry Accumulator only 1
SWAP A Swap Nibbles in A Accumulator only 1

4-3

CHAPTER 4
Instruction Set

The addressing modes that can be used to access the
<byte> operand are listed in Table 3. Thus, the ANL
A,<byte> instruction may take any of the forms

ANL A, TFH (direct addressing)

ANL A,@R1 (indirect addressing)
ANL AR6 (register addressing)
ANL A,#53H (immediate constant)

All of the logical instructions that are Accumulator-
specific execute in lus (using a 12 MHz clock). The
others take 2 us.

Note that Boolean operations can be performed on any
byte in the internal Data Memory space without going
through the Accumulator. The XRL <byte>, #data
instruction, for example, offers a quick and easy way to
invert port bits, as in
XRL P1,#0FFH

If the operation is in response to an interrupt, not using
the Accumulator saves the time and effort to stack it in
the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the
Accumulator 1 bit to the left or right. For a left rota-
tion, the MSB rolls into the LSB position. For a right
rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and
low nibbles within the Accumulator. This is a useful
operation in BCD manipulations. For example, if the
Accumulator contains a binary number which is known
to be less than 100, it can be quickly converted to BCD
by the following code:

MOV B,#10
DIV AB
SWAP A
ADD AB

Dividing the number by 10 leaves the tens digit in the
low nibble of the Accumulator, and the ones digit in the
B register. The SWAP and ADD instructions move the
tens digit to the high nibble of the Accumulator, and
the ones digit to the low nibble.

DATA TRANSFERS

Internal RAM

Table 4-3 shows the menu of instructions that are avail-
able for moving data around within the internal memo-
ry spaces, and the addressing modes that can be used
with each one. With a 12 MHz clock, all of these in-
structions execute in either 1 or 2 us.

The MOV <dest>, <src> instruction allows data to
be transferred between any two internal RAM or SFR
locations without going through the Accumulator. Re-
member the Upper 128 byes of data RAM can be ac-
cessed only by indirect addressing, and SFR space only
by direct addressing.

Note that in all 8051 Family devices, the stack resides in
on-chip RAM, and grows upwards. The PUSH instruc-
tion first increments the Stack Pointer (SP), then copies
the byte into the stack. PUSH and POP use only direct
addressing to identify the byte being saved or restored,
but the stack itself is accessed by indirect addressing
using the SP register. This means the stack can go into
the Upper 128, if they are implemented, but not into
SFR space.

Table 4-3. 8051 Family Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic Operation Addressing Modes Execution

Dir | Ind | Reg | Imm | Time(us)
MOV A, <src> A = <src> X X X X 1
MOV <dest>,A <dest> = A X X X 1
MOV <dest>, <src> | <dest> = <src> X X X X 2
MOV DPTR,#data16 DPTR = 16-bitimmediate constant. X 2
PUSH <src> INC SP : MOV “@SP”,<src> X 2
POP <dest> MOV <dest>, “@SP” : DEC SP X 2
XCH A, <byte> ACC and <byte> exchange data X X X 1
XCHD A,@Ri ACC and @Ri exchange low nibbles X 1

4-4

CHAPTER 4
Instruction Set

| 2a | 28 | 2c | 20 | 2E | Acc

MOV A2EH 00 f 12 | 34 | 56 | 78 78
MOV 2EH,2DH | 00 | 12 | 34 | 56 | 56 78
MOV 2DH2CH | 00 | 12 | 34 | 34 | 56 78
MOV 2CH2BH | 00 | 12 | 12 | 34 | 56 | 78
MOV 2BH,#0 00 1 00 | 12 | 34 | 56 78

(a) Using direct MOVs: 14 bytes, 9 us
[2a | 28 | 2c | 20 | 2E | AcC

CLR A 00 | 12 | 34 | 56 | 78 00
XCH A2BH | 00 | 00 | 34 | 56 | 78 12
XCH A2CH | 00 [00 | 12 | 56 | 78 34
XCH A2DH | 00 ; 00 ; 12 | 34 | 78 56
XCH A2EH ! 00 i 00 | 12 | 34 | 56 I 78

(b) Using XCHs: 9 bytes, 5 us

Figure 4-2. Shifting a BCD Number
Two Digits to the Right

The Upper 128 are not implemented in 8051 Family de-
vices with 128 bytes of RAM. With these devices, if the
SP points to the Upper 128, PUSHed bytes are lost, and
POPed bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV
that can be used to initialize the Data Pointer (DPTR)
for look-up tables in Program Memory, or for 16-bit
external Data Memory accesses.

The XCH A, <byte> instruction causes the Accumu-
lator and addressed byte to exchange data. The XCHD
A,@Ri instruction is similar, but only the low nibbles
are involved in the exchange.

To see how XCH and XCHD can be used to facilitate
data manipulations, consider first the problem of shift-
ing an 8-digit BCD number two digits to the right. Fig-
ure 4-2 shows how this can be done using direct
MOVs, and for comparison how it can be done using
XCH instructions. To aid in understanding how the
code works, the contents of the registers that are hold-
ing the BCD number and the content of the Accumula-
tor are shown alongside each instruction to indicate
their status after the instruction has been executed.

After the routine has been executed, the Accumulator
contains the two digits that were shifted out on the
right. Doing the routine with direct MOVs uses 14 code
bytes and 9 us of execution time (assuming a 12 MHz
clock). The same operation with XCHs uses less code
and executes almost twice as fast.

2A|2B|2C|2D|2E|ACC
MOV R1,#2EH 00{12(34(56|78| XX
MOV RO, #2DH 0011213456178 XX
loop for R1 = 2EH:

LOOP: MOV A,@R1 00{12{34|56(78(78
XCHD A,@RO 00{12|34|58|78| 76
SWAP A 00({12{34|58|78| 67
MOV @Ri,A 00|12|34|58|67| 67
DEC R1 00{12|34(58|67| 67
DEC RO 00i12134!58l67! 67
CJINE R1,#2AH,LOOP

loop for R1 = 2DH: 00{12138145{67| 45
loop for R1 = 2CH: 00(18]23|45|67| 23
loop for R1 = 2BH: oslot1l23las5l67! 01
CLR A ,oalmlza 45'67 00
XCH A2AH 00i01123l45i67| 08

Figure 4-3. Shifting a BCD Number
One Digit to the Right

To right-shift by an odd number of digits, a one-digit
shift must be executed. Figure 4-3 shows a sample of
code that will right-shift a BCD number one digit, us-
ing the XCHD instruction. Again, the contents of the
registers holding the number and of the Accumulator
are shown alongside each instruction.

First, pointers R1 and RO are set up to point to the two
bytes containing the last four BCD digits. Then a loop
is executed which leaves the last byte, location 2EH,
holding the last two digits of the shifted number. The
pointers are decremented, and the loop is repeated for
location 2DH. The CJINE instruction (Compare and
Jump if Not Equal) is a loop control that will be de-
scribed later.

The loop is executed from LOOP to CINE for R1 =
2EH, 2DH, 2CH and 2BH. At that point the digit that
was originally shifted out on the right has propagated
to location 2AH. Since that location should be left with
0Os, the lost digit is moved to the Accumulator.

External RAM

Table 4-4 shows a list of the Data Transfer instructions
that access external Data Memory. Only indirect ad-
dressing can be used. The choice is whether to use a
one-byte address, @Ri, where Ri can be either RO or

CHAPTER 4
Instruction Set

R1 of the selected register bank, or a two-byte address,
@DPTR. The disadvantage to using 16-bit addresses if
only a few K bytes of external RAM are involved is
that 16-bit addresses use all 8 bits of Port 2 as address
bus. On the other hand, 8-bit addresses allow one to
address a few K bytes of RAM, as shown in Figure 1-5,
without having to sacrifice all of Port 2.

All of these instructions execute in 2 us, with a
12 MHz clock.
Table 4-4. 8051 Family Data Transfer
Instructions that Access
External Data Memory Space

A‘:ﬁ;:; s Mnemonic Operation .Er"(:‘iu&:';
8bits |MOVXA@Ri |noadedomal) ,
Bbits | MOVX@RiA | Ao extemal 2

16bits | MOVX A,.@DPTR | Road external 2
16bits | MOVX @DPTRA | fate &Xtormal 2

Note that in all external Data RAM accesses, the Ac-
cumulator is always either the destination or source of
the data.

The read and write strobes to external RAM are acti-
vated only during the execution of a MOVX instruc-
tion. Normally these signals are inactive, and in fact if
they’re not going to be used at all, their pins are avail-
able as extra I/0 lines. More about that later.

Lookup Tables

Table 4-5 shows the two instructions that are available
for reading lookup tables in Program Memory. Since
these instructions access only Program Memory, the
lookup tables can only be read, not updated. The mne-
monic is MOVC for “move constant”.

If the table access is to external Program Memory, then
the read strobe is PSEN.

Table 4-5. The 8051 Family
Lookup Table Read Instructions

Mnemonic Operation ?I(:;u(t:;')‘
MOVC A,@A+DPTR | Read Pgm Memory 2
at (A+DPTR)
MOVC A,@A+PC Read Pgm Memory 2
at (A+PC)

The first MOVC instruction in Table 4-5 can accommo-
date a table of up to 256 entries, numbered O through
255. The number of the desired entry is loaded into the
Accumulator, and the Data Pointer is set up to point to
beginning of the table. Then

MOVC A,@A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, ex-
cept the Program Counter (PC) is used as the table
base, and the table is accessed through a subroutine.
First the number of the desired entry is loaded into the
Accumulator, and the subroutine is called:

MOV
CALL

A,ENTRY__NUMBER
TABLE

The subroutine “TABLE” would look like this:

TABLE: MOVC A,@A+PC
RET

The table itself immediately follows the RET (return)
instruction in Program Memory. This type of table can
have up to 255 entries, numbered 1 through 255. Num-
ber 0 can not be used, because at the time the MOVC
instruction is executed, the PC contains the address of
the RET instruction. An entry numbered 0 would be
the RET opcode itself.

BOOLEAN INSTRUCTIONS

8051 Family devices contain a complete Boolean (single-bit)
processor. The internal RAM contains 128 addressable
bits, and the SFR space can support up to 128 other
addressable bits. All of the port lines are bit-address-
able, and each one can be treated as a separate single-
bit port. The instructions that access these bits are not
just conditional branches, but a complete menu of
move, set, clear, complement, OR, and AND instruc-
tions. These kinds of bit operations are not easily ob-
tained in other architectures with any amount of byte-
oriented software.

4-6

CHAPTER 4
Instruction Set

Table 4-6. A List of the 8051 Family
Boolean Instructions

Mnemonic Operation .Er’l";"‘;"(t‘;')‘
ANL Cpit |C = C.AND.bit 2
ANL C,/bit |C = C.AND. .NOT. bit 2
ORL C,it |C = C.OR.bit 2
ORL C,/bit |C = C.OR..NOT. bit 2
MOV C,bit |C = bit 1
MOV bit,C Ibit=C 2
CLR C cC=0 1
CLR bit bit = 0 1
SETB C C=1 1
SETB bit bit = 1 1
CPL C C = .NOT.C 1
CPL bit bit = .NOT. bit 1
JC rei JumpifC = i 2
JNC rel JumpifC=0 2
JB bit,rel | Jump if bit = 1 2
JNB bitrel |Jumpifbit =0 2
JBC bitrel |Jumpif bit = 1; CLR bit 2

The instruction set for the Boolean processor is shown
in Table 4-6. All bit accesses are by direct addressing. Bit
addresses 00H through 7FH are in the Lower 128, and
bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port
pin:

MOV
MOV

CFLAG
P1.0,C

In this example, FLAG is the name of any addressable
bit in the Lower 128 or SFR space. An 1/0 line (the
LSB of Port 1, in this case) is set or cleared depending
on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accu-
mulator of the Boolean processor. Bit instructions that
refer to the Carry bit as C assemble as Carry-specific
instructions (CLR C, etc). The Carry bit also has a
direct address, since it resides in the PSW register,
which is bit-addressable.

Note that the Boolean instruction set includes ANL
and ORL operations, but not the XRL (Exclusive OR)
operation. An XRL operation is simple to implement in
software. Suppose, for example, it is required to form
the Exclusive OR of two bits:

C = bitl .XRL. bit2

The software to do that could be as follows:

MOV C,bitl
JNB bit2, OVER
CPL C.

OVER: (continue)

First, bitl is moved to the Carry. If bit2 = 0, then C
now contains the correct result. That is, bit] . XRL. bit2
= bitl if bit2 = 0. On the other hand, if bit2 = 1 C
now contains the complement of the correct result. It
need only be inverted (CPL C) to complete the opera-
tion.

This code uses the JNB instruction, one of a series of
bit-test instructions which execute a jump if the ad-
dressed bit is set (JC, JB, JBC) or if the addressed bit is
not set (JNC, JNB). In the above case, bit2 is being
tested, and if bit2 = 0 the CPL C instruction is jumped
over.

JBC executes the jump if the addressed bit is set, and
also clears the bit. Thus a flag can be tested and cleared
in one operation.

All the PSW bits are directly addressable, so the Parity
bit, or the general purpose flags, for example, are also
available to the bit-test instructions.

Relative Offset

The destination address for these jumps is specified to
the assembler by a label or by an actual address in
Program Memory. However, the destination address
assembles to a relative offset byte. This is a signed
(two’s complement) offset byte which is added to the
PC in two’s complement arithmetic if the jump is exe-
cuted.

The range of the jump is therefore —128 to + 127 Pro-
gram Memory bytes relative to the first byte following
the instruction.

4-7

CHAPTER 4
Instruction Set

JUMP INSTRUCTIONS

Table 4-7 shows the list of unconditional jumps.

Table 4-7. Unconditional Jumps
in 8051 Family Devices

Mnemonic Operation ﬁ.’l(:‘iu("ﬁ?
JMP addr Jump to addr 2
JMP @A+DPTR | Jump to A+ DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

The Table lists a single “JMP addr” instruction, but in
fact there are three—SJMP, LYMP and AJMP—which
differ in the format of the destination address. JMP is a
generic mnemonic which can be used if the program-
mer does not care which way the jump is encoded.

The SIMP instruction encodes the destination address
as a relative offset, as described above. The instruction
is 2 bytes long, consisting of the opcode and the relative
offset byte. The jump distance is limited to a range of
— 128 to + 127 bytes relative to the instruction follow-
ing the SJMP.

The LIMP instruction encodes the destination address
as a 16-bit constant. The instruction is 3 bytes long,
consisting of the opcode and two address bytes. The
destination address can be anywhere in the 64K Pro-
gram Memory space.

The AJMP instruction encodes the destination address
as an 11-bit constant. The instruction is 2 bytes long,
consisting of the opcode, which itself contains 3 of the
11 address bits, followed by another byte containing the
low 8 bits of the destination address. When the instruc-
tion is executed, these 11 bits are simply substituted for
the low 11 bits in the PC. The high 5 bits stay the same.
Hence the destination has to be within the same 2K
block as the instruction following the AJMP.

In all cases the programmer specifies the destination
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the destina-
tion address into the correct format for the given in-
struction. If the format required by the instruction will
not support the distance to the specified destination ad-
dress, a “Destination out of range” message is written
into the List file.

The JMP @A +DPTR instruction supports case
jumps. The destination address is computed at execu-
tion time as the sum of the 16-bit DPTR register and
the Accumulator. Typically, DPTR is set up with the
address of a jump table, and the Accumulator is given
an index to the table. In a 5-way branch, for example,
an integer O through 4 is loaded into the Accumulator.
The code to be executed might be as follows:

MOV DPTR, #JUMP__TABLE
MOV A,INDEX__NUMBER
RL A

JMP @A +DPTR

The RL A instruction converts the index number (0
through 4) to an even number on the range 0 through 8,
because each entry in the jump table is 2 bytes long:

JUMP__TABLE:

AJMP CASE_0
AJMP CASE__1
AJMP CASE_2
AJMP CASE__3
AJMP CASE__4

Table 4-7 shows a single “CALL addr” instruction, but
there are two of them—LCALL and ACALL—which
differ in the format in which the subroutine address is
given to the CPU. CALL is a generic mnemonic which
can be used if the programmer does not care which way
the address is encoded.

The LCALL instruction uses the 16-bit address format,
and the subroutine can be anywhere in the 64K Pro-
gram Memory space. The ACALL instruction uses the
11-bit format, and the subroutine must be in the same
2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the address
into the correct format for the given instructions.

Subroutines should end with a RET instruction, which
returns execution to the instruction following the
CALL.

RETI is used to return from an interrupt service rou-
tine. The only difference between RET and RETI is
that RETI tells the interrupt control system that the
interrupt in progress is done. If there is no interrupt in
progress at the time RETI is executed, then the RETI
is functionally identical to RET.

4-8

CHAPTER 4
Instruction Set

Table 4-8. Conditional Jumps in 8051 Family Devices

Addressing Modes Execution

Mnemonic Operation o] nd ‘ Reg 1 | Time (us)
JZ rel JumpifA =0 Accumulator only 2
JNZ rel Jumpif A+ 0 Accumulator only 2
DJINZ <byte> rel Decrement and jump if not zero X X 2
CJNE A, <byte>rel Jump if A # <byte> X X 2
CJINE <byte>,#data,rel | Jumpif <byte> # #data X X 2

Table 4-8 shows the list of conditional jumps available to the
8051 Family user. All of these jumps specify the desti-
nation address by the relative offset method, and so are
limited to a jump distance of — 128 to + 127 bytes from
the instruction following the conditional jump instruc-
tion. Important to note, however, the user specifies to
the assembler the actual destination address the same
way as the other jumps: as a label or a 16-bit constant.

There is no Zero bit in the PSW. The JZ and INZ
instructions test the Accumulator data for that condi-
tion.

The DINZ instruction (Decrement and Jump if Not
Zero) is for loop control. To execute a loop N times,
load a counter byte with N and terminate the loop with
a DINZ to the beginning of the loop, as shown below
for N = 10:

MOV COUNTER, # 10
LOOP: (begin loop)
*

*
*

(end loop)
DINZ COUNTER,LOOP
(continue)

The CINE instruction (Compare and Jump if Not
Equal) can also be used for loop control as in Figure 4-3.
Two bytes are specified in the operand field of the in-
struction. The jump is executed only if the two bytes
are not equal. In the example of Figure 4-3, the two
bytes were the data in R1 and the constant 2AH. The
initial data in R1 was 2EH. Every time the loop was
executed, R1 was decremented, and the looping was to
continue until the R1 data reached 2AH.

Another application of this instruction is in “‘greater
than, less than” comparisons. The two bytes in the op-
erand field are taken as unsigned integers. If the first is
less than the second, then the Carry bit is set (1). If the
first is greater than or equal to the second, then the
Carry bit is cleared.

4-9

CHAPTER 4
Instruction Set

Table 4-9. 8051 Instruction Set Summary

Interrupt Response Time: Refer to Chapter 2, page 2-24

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag
C OV AC C OV AC

ADD X X X CLRC (0]
ADDC X X X CPLC X
sSuBB X X X ANLC,bit X

MUL O X ANL C,/bit X

DIV o X ORLC,bit X

DA X ORLC,bit X

RRC X MOV Cbit X

RLC X CJINE X
SETBC 1

(DNote that operations on SFR byte address 208 or
bit addresses 209-215 (i.e., the PSW or bits in the
PSW) will also affect flag settings.

Note on instruction set and addressing modes:

Rn — Register R7-RO of the currently se-
lected Register Bank.

— 8-bit internal data location’s address.
This could be an Internal Data RAM
location (0-127) or a SFR [i.e, I/O
port, control register, status register,
etc. (128-255)].

— 8-bit internal data RAM location (0-
255) addressed indirectly through reg-
ister R1 or RO.

#data — 8-bit constant included in instruction.

#data 16 — 16-bit constant included in instruction.

direct

@Ri

addr 16 — 16-bit destination address. Used by
LCALL & LJMP. A branch can be
anywhere within the 64K-byte Pro-
gram Memory address space.

addr 11 — 11-bit destination address. Used by

ACALL & AJMP. The branch will be
within the same 2K-byte page of pro-
gram memory as the first byte of the
following instruction.
rel — Signed (two’s complement) 8-bit offset
byte. Used by SIMP and all condition-
al jumps. Range is —128 to + 127
bytes relative to first byte of the fol-
lowing instruction.
bit — Direct Addressed bit in Internal Data
RAM or Special Function Register.
— New operation not provided by
8048AH/8049AH.

Mnemonic

Description

Byte

Oscillator
Period

ARITHMETIC OPERATIONS

ADD

ADD

ADD

ADD

ADDC

ADDC

ADDC

ADDC

SuBB

SUBB

sSuBB

suBB

INC

INC
INC

INC

DEC

DEC

DEC

DEC

ARn
A,direct
A,@Ri

A, #data

A,Rn

A, direct

A, @Ri

A, #data

A,Rn

A, direct

A,@Ri

A, #data

A

Rn
direct

@Ri
A

Rn
direct

@Ri

Add register to
Accumulator

Add direct byte to
Accumulator
Add indirect RAM
to Accumulator
Add immediate
data to
Accumulator

Add register to
Accumulator
with Carry

Add direct byte to
Accumulator

with Carry

Add indirect

RAM to
Accumulator

with Carry

Add immediate
data to Acc

with Carry
Subtract Register
from Acc with
borrow

Subtract direct
byte from Acc
with borrow
Subtract indirect
RAM from ACC
with borrow
Subtract
immediate data
from Acc with
borrow
Increment
Accumulator
Increment register
Increment direct
byte

Increment direct
RAM

Decrement
Accumulator
Decrement
Register
Decrement direct
byte

Decrement
indirect RAM

12

12

12

12

12

12

12

12

12

12

12
12

12

12

12

12

12

4-10

CHAPTER 4
Instruction Set

Table 4-9. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte °;:'r':::,°' Mnemonic Description Byte Cponon”
ARITHMETIC OPERATIONS (Continued) LOGICAL OPERATIONS (Continued)
INC DPTR Increment Data 1 24 XRL direct,#data Exclusive-OR 3 24
Pointer immediate data
MUL AB Multiply A & B 1 48 to direct byte
DIV AB Divide A by B 1 48 CLR A Clear 1 12
DA A Decimal Adjust 1 12 Accumulator
Accumulator CPL A Complement 1 12
LOGICAL OPERATIONS Accumulator
ANL ARn AND Register to 1 12 RL A Rotate 1 12
Accumulator Accumuiator Left
ANL Adirect AND direct byte 2 12 RLC A Rotate 1 12
to Accumulator Accumulator Left
ANL A,@Ri AND indirect 1 12 through the Carry
RAM to RR A Rotate 1 12
Accumulator Accumulator
ANL A, #data AND immediate 2 12 Right
data to RRC A Rotate 1 12
Accumulator Accumulator
ANL direct,A AND Accumulator 2 12 Right through
to direct byte the Carry
ANL direct,#data AND immediate 3 24 SWAP A Swap nibbles 1 12
data to direct byte within the
ORL ARn OR register to 1 12 Accumulator
Accumulator DATA TRANSFER
ORL A,direct ORdirectbyteto 2 12 MOV ARn Move 1 12
Accumulator register to
ORL A,@Ri OR indirect RAM 1 12 Accumulator
to Accumulator MOV Adirect Move direct 2 12
ORL A, #data OR immediate 2 12 byte to
data to Accumulator
Accumulator MOV A,@Ri Move indirect 1 12
ORL direct,A OR Accumulator 2 12 RAM to
to direct byte Accumulator
ORL direct,#data OR immediate 3 24 MOV A #data Move 2 12
data to direct byte immediate
XRL ARn Exclusive-OR 1 12 datato
register to Accumulator
Accumulator MOV RnA Move 1 12
XRL A,direct Exclusive-OR 2 12 Accumulator
direct byte to to register
Accumulator MOV Rn,direct Move direct 2 24
XRL A,@Ri Exclusive-OR 1 12 byte to
indirect RAM to register
Accumulator MOV Rn,#data Move 2 12
XRL A, #data Exclusive-OR 2 12 immediate data
immediate data to to register
Accumulator MOV direct,A Move 2 12
XRL direct,A Exclusive-OR 2 12 Accumulator
Accumulator to to direct byte

direct byte

CHAPTER 4
Instruction Set

Table 4-9. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte O;(;I:::;or Mnemonic Description Byte o::l::;:’or
DATA TRANSFER (Continued) XCH ARn Exchange 1 12
MOV direct,Rn Move register 2 24 register with

to direct byte Accumulator
MOV direct,direct Move direct 3 24 XCH Adirect Exchange 2 12
byte to direct direct byte
MOV direct,@Ri Move indirect 2 24 with
RAM to Accumulator
direct byte XCH A @Ri Exchange 1 12
MOV direct, #data Move 3 24 indirect RAM
immediate data with
to direct byte Accumulator
MOV @RiA Move 1 12 XCHD A, @Ri Exchange low- 1 12
Accumulator to order Digit
indirect RAM indirect RAM
MOV @Ridirect Move direct 2 24 with Acc
byte to BOOLEAN VARIABLE MANIPULATION
indirect RAM CLR C Clear Carry 1 12
MOV @Ri,#data Move 2 12 CLR bit Clear direct bit 2 12
immediate SETB C Set Carry 1 12
datato SETB bit Set direct bit 2 12
indirect RAM CPL e} Complement 1 12
MOV DPTR,#data16 Load Data 3 24 Carry
Pointer with a CPL bit Complement 2 12
16-bit constant direct bit
MOVC A,@A+DPTR Move Code 1 24 ANL C.bit AND direct bit 2 24
byte relative to to CARRY
DPTR to Acc ANL C/bit ANDcomplement 2 24
MOVC A,@A+PC Move Code 1 24 of direct bit
byte relative to to Carry
PCto Acc ORL Cbit ORdirect bit 2 24
MOVX A,@Ri Move 1 24 to Carry
External ORL C,bit OR compiement 2 24
RAM (8-bit of direct bit
addr) to Acc to Carry
MOVX A,@DPTR Move 1 24 MOV Cbit Move diret bit 2 12
External to Carry
RAM (16-bit MOV bit,C Move Carry to 2 24
addr) to Acc direct bit
MOVX @RiA Move Acc to 1 24 Jc rel Jump if Carry 2 24
External RAM is set
(8-bit addr) JINC rel Jump if Carry 2 24
MOVX @DPTR,A Move Acc to 1 24 not set
External RAM JB bitrel Jump if direct 3 24
(16-bit addr) Bit is set
PUSH direct Push direct 2 24 JNB bitrel Jump if direct 3 24
byte onto Bit is Not set
stack JBC bitrel Jumpif direct 3 24
POP direct Pop direct 2 24 Bit is set &
byte from clear bit
stack

CHAPTER 4

Instruction Set
Table 4-9. 8051 Instruction Set Summary (Continued)
Mnemonic Description Byte O::I:::Lor Mnemonic Description Byte O:::!il:;or
PROGRAM BRANCHING PROGRAM BRANCHING (Continued)
ACALL addri1 Absolute 2 24 CJNE Rn,#data,rel Compare 3 24
Subroutine immediate to
Call register and
LCALL addr16 Long 3 24 Jump if Not
Subroutine Equal
Call CJNE @Ri, #data,rel Compare 3 24
RET Return from 1 24 immediate to
Subroutine indirect and
RETI Return from 1 24 Jump if Not
interrupt Equal
AJMP addri1 Absolute 2 24 DJNZ Rn,rel Decrement 2 24
Jump register and
LJMP addr16 Long Jump 3 24 Jump if Not
SJMP rel Short Jump 2 24 Zero
(relative addr) DJINZ direct,rel Decrement 3 24
JMP @A+DPTR Jump indirect 1 24 direct byte
relative to the and Jump if
DPTR Not Zero
Jz rel Jump if 2 24 NOP No Operation 1 12
Accumulator
is Zero
JNZ rel Jump if 2 24
Accumulator
is Not Zero
CJUNE A,directrel Compare 3 24
direct byte to
Acc and Jump
if Not Equal
CJNE A, #data,rel Compare 3 24
immediate to
Acc and Jump
if Not Equal

413

CHAPTER 4
Instruction Set

ACALL addri1

INSTRUCTION DEFINITIONS

Description:

Function:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address. The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The
destination address is obtained by successively concatenating the five high-order bits of the
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called
must therefore start within the same 2K block of the program memory as the first byte of the
instruction following ACALL. No flags are affected.

Initially SP equals O7H. The label “SUBRTN” is at program memory location 0345 H. After
executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain
25H and O1H, respectively, and the PC will contain 0345H.

2
2

al0a9a8 1| 0001 | |a7a6a5a4| ada2ala0

ACALL

(PC) « (PC) + 2

(SP) «— (SP) + 1

((SP)) « (PC1.0)

(SP) «— (SP) + 1

((SP)) «— (PCys.3)
(PCj0.0) < page address

CHAPTER 4
Instruction Set

ADD A,<src-byte>

Function:
Description:

Example:

ADD ARn
Bytes:
Cycles:
Encoding:

Operation:

ADD Adirect
Bytes:
Cycles:

Encoding:

Operation:

Add

ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumula-
tor. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or
bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an
overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a negative number pro-
duced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-
diate.

The Accumulator holds OC3H (11000011B) and register 0 holds OAAH (10101010B). The
instruction,

ADD ARO

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

0010 | trrr|

ADD
(A) <= (A) + (Rn)

2
1

loo10]o0101] [diectaddress

ADD
(A) <« (A) + (direct)

4-15

CHAPTER 4
Instruction Set

ADD A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

ADD A, #data
Bytes:
Cycles:
Encoding:

Operation:

1
1

loo10]o011i]

ADD
(A) <= (A) + (R))

0010[0100] [immediate data |

ADD
(A) «— (A) + #data

ADDC A, <src-byte>

Function:

Description:

Example:

Add with Carry

ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator
contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set,
respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding
unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of
bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-
diate.

The Accumulator holds OC3H (11000011B) and register O holds 0OAAH (10101010B) with the
carry flag set. The instruction,

ADDC A,RO

will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and
OV set to 1.

CHAPTER 4
Instruction Set

ADDC A,Rn
Bytes: 1
Cycles: 1

Encoding: 0011 l 1rr rJ

Operation: ADDC
A<= @A) + (O +Rp

ADDC A,direct
Bytes: 2

—

Cycles:

Encoding: | 00110101 | | directaddress |

Operation: ADDC
(A) « (A) + (C) + (direct)

ADDC A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0011]011i]

Operation: ADDC
A) <A + (©) + (RyY

ADDC A,#data

Bytes: 2
Cycles: 1
Encoding: [0011/0100]| | immediatedata |

Operation: ADDC
(A) < (A) + (C) + #data

4-17

CHAPTER 4
Instruction Set

AJMP addri11

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Jump

AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits
7-5, and the second byte of the instruction. The destination must therefore be within the same
2K block of program memory as the first byte of the instruction following AJMP.

The label “JMPADR?” is at program memory location 0123H. The instruction,
AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
2
2

a1029a80 | 0001 | | a7a6a5a4 | ad a2al a0

AJMP
(PC)«— (PC) + 2
(PCj0.0) < page address

ANL <dest-byte>,<src-byte>

Function:

Description:

Example:

Logical-AND for byte variables

ANL performs the bitwise logical-AND operation between the variables indicated and stores
the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

If the Accumulator holds 0C3H (11000011B) and register 0 holds 55H (01010101B) then the
instruction,

ANL ARO

will leave 41H. (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of
bits in any RAM location or hardware register. The mask byte determining the pattern of bits
to be cleared would either be a constant contained in the instruction or a value computed in
the Accumulator at run-time. The instruction,

ANL PI1,#01110011B

will clear bits 7, 3, and 2 of output port 1.

4-18

CHAPTER 4
Instruction Set

ANL ARn

Bytes:
Cycles:

Encoding:

Operation:

ANL A direct

Bytes:
Cycles:

Encoding:

Operation:

ANL A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

ANL A, #data

Bytes:
Cycles:

Encoding:

Operation:

0101j1rrr\

ANL
(A) <= (A) A (Rn)

01010101 |

[direct addressJ

ANL

(A) <= (A) A (direct)

0101 /011i]

ANL

(A) < (A) A (RD)

01010100 |

I immediate data J

ANL
(A) < (A) A #data

4-19

CHAPTER 4
Instruction Set

ANL direct,A
Bytes:
Cycles:
Encoding:

Operation:

ANL direct, # data

Bytes:
Cycles:

Encoding:

Operation:

ANL C,<src-bit>

2
1

lo101]o0010] | directaddress

ANL
(direct) «— (direct) A (A)

3
2

0101 0011 | l direct address] | immediate data

ANL
(direct) «— (direct) A #data

Function:

Description:

Example:

ANL C,bit

Bytes:
Cycles:

Encoding:

Operation:

Logical-AND for bit variables

If the Boolean value of the source bit is a logical O then clear the carry flag; otherwise leave the
carry flag in its current state. A slash (“/”") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but the
source bit itself is not affected. No other flags are affected.

Only direct addressing is allowed for the source operand.
Set the carry flag if, and only if, P1.0 = 1, ACC. 7 = 1, and OV = O:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C.ACC.7 ;AND CARRY WITH ACCUM. BIT 7

ANL C,/O0V ;AND WITH INVERSE OF OVERFLOW FLAG
2

2

|1000]0010] | bitaddress

ANL
(C) <= () A (bit)

4-20

CHAPTER 4
Instruction Set

ANL C,/bit

Bytes:
Cycles:

Encoding:

Operation:

1011]0000]| | bitaddress

ANL
(©) < (O) A T1(bit)

CJUNE <dest-byte’>, <src-byte>,rel

Function:

Description:

Example:

Compare and Jump if Not Equai.

CINE compares the magnitudes of the first two operands, and branches if their values are not
equal. The branch destination is computed by adding the signed relative-displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction.
The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM location
or working register can be compared with an immediate constant.

The Accumulator contains 34H. Register 7 contains S6H. The first instruction in the se-
quence,

CINE R7,#60H, NOT_EQ
; e ; R7 = 60H.
NOT_EQ: JC REQ_LOW ; IFR7 < 60H.
; Cee e ; R7 > 60H.
sets the carry flag and branches to the instruction at label NOT__EQ. By testing the carry flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,
WAIT: CINE APLWAIT
clears the carry flag and continues with the next instruction in sequence, since the Accumula-

tor does equal the data read from P1. (If some other value was being input on P1, the program
will loop at this point until the P1 data changes to 34H.)

4-21

CHAPTER 4
Instruction Set

CJNE A,direct,rel

Bytes: 3
Cycles: 2
Encoding: 1011 0101] I direct address] [rel. address

Operation: (PC) «— (PC) + 3
IF (A) <> (direct)
THEN
(PC) «— (PC) + relative offset

IF (A) < (direct)

THEN
(C)«1
ELSE
(C)«0
CJNE A, #data,rel
Bytes: 3
Cycles: 2
Encoding: 1011 0100] I immediate data l [rel. address

Operation: (PC) «— (PC) + 3
IF (A) <> data
THEN
(PC) «— (PC) + relative offset

IF (A) < data
THEN

(©C) «1
ELSE

(C) <0

CJNE Rn,#data,rel

Bytes: 3
Cycles: 2
Encoding: 1011 l 1rrr I [immediate data] Lrel. address

Operation: (PC) «— (PC) + 3
IF (Rn) <> data
THEN
(PC) «— (PC) + relative offset

IF (Rn) < data
THEN

€)1
ELSE

(©)«0

4-22

CHAPTER 4
Instruction Set

CJNE @Ri,#data,rel

Bytes: 3
Cycles: 2
Encoding: 1011 l 011] [immediate data J I rel. address
Operation: (PC) «— (PC) + 3
IF ((Ri)) <> data
THEN
(PC) «— (PC) + relative offset
IF ((R1)) < data
THEN
(O «1
ELSE
(C)«0
CLR A
Function: Clear Accumulator
Description: The Accumulator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CLR A
will leave the Accumulator set to 00OH (00000000B).
Bytes: 1
Cycles: 1
Encoding: | 1111]0100]|
Operation: CLR
(A) <0
CLR bit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the
carry flag or any directly addressable bit.
Example: Port i has previously been written with SDH (01011101B). The instruction,

CLR P12

will leave the port set to S9H (01011001B).

4-23

CHAPTER 4
Instruction Set

CLR C
Bytes: 1
Cycles: 1
Encoding: | 1100 [0011]
Operation: CLR
© <0
CLR bit
Bytes: 2
Cycles: 1
Encoding: | 1100 [0010] [bitaddress
Operation: CLR
(bit) «= 0
CPL A
Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which previ-
ously contained a one are changed to a zero and vice-versa. No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CPL A
will leave the Accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1
Encoding: | 1111]0100 |
Operation: CPL
(A) <= 71(A)

4-24

CHAPTER 4
Instruction Set

CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and
vice-versa. No other flags are affected. CLR can operate on the carry or any directly address-
able bit.
Note: When this instruction is used to modify an output pin, the value used as the original data
will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with SBH (01011101B). The instruction sequence,
CPL Pl.1
CPL Pl1.2
will leave the port set to SBH (01011011B).
CPL C
Bytes: 1
Cycles: 1
Encoding: | 1011]0011 |
Operation: CPL
(C) <= 71(0)
CPL bit
Bytes: 2
Cycles: 1
Encoding: 10110010 I mt address |
Operation: CPL
(bit) «—] (bit)

4-25

CHAPTER 4
Instruction Set

DA A

Function:

Description:

Example:

Bytes:
Cycles:

Decimal-adjust Accumulator for Addition

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two
variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one,
six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This
internal addition would set the carry flag if a carry-out of the low-order four-bit field propagat-
ed through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-111xxxx),
these high-order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but
wouldn’t clear the carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD nota-
tion, nor does DA A apply to decimal subtraction.

The Accumulator holds the value 56H (01010110B) representing the packed BCD digits of the
decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed
BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value OBEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two
digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal
Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is
124.

BCD variables can be incremented or decremented by adding O1H or 99H. If the Accumulator
initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A,#99H
DA A

will leave the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order
byte of the sum can be interpreted to mean 30 — 1 = 29.

1
1

4-26

CHAPTER 4
Instruction Set

Encoding: 11010100
Operation: DA
-contents of Accumulator are BCD
IF [[(As0) > 9] V [(AC) = 1]]
THEN(A3) <= (A30) t+ 6
AND
IF [[(A7.9 > 91 V [(©©) = 1]]
THEN (A7.4) €<= (A7.9) + 6
DEC byte
Function: Decrement
Description: The variable indicated is decremented by 1. An original value of 00H will underflow to OFFH.
No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register O contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H
and 40H, respectively. The instruction sequence,
DEC @RO
DEC RO
DEC @RO
will leave register O set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding: 0001] 0100
Operation: DEC
A=A -1
DEC Rn
Bytes: 1
Cycles: 1
Encoding: 0001[1rrr|
Operation: DEC

(Rn) = (Rn) — 1

4-27

CHAPTER 4
Instruction Set

DEC direct
Bytes: 2
Cycles: |
Encoding: 0001 0101] [direct address
Operation: DEC
(direct) €« (direct) — 1
DEC @RI
Bytes: 1
Cycles: 1
Encoding: 0001 l 011 iq
Operation: DEC
((Ri)) <= ((R)) — 1
DIV AB
Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.
Exception: if B had originally contained O0H, the values returned in the Accumulator and B-
register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.
Example: The Accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or 00010010B).
The instruction,
DIV AB
will leave 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010001B)
in B, since 251 = (13 X 18) + 17. Carry and OV will both be cleared.
Bytes: 1
Cycles: 4
Encoding: | 10000100 |
Operation: DIV
(A)15.3

(B)r.o T AVE)

4-28

CHAPTER 4
Instruction Set

DJNZ <byte>,<rel-addr>

'Function:

Description:

Example:

DJNZ Rn,rel
Bytes:
Cycles:
Encoding:

Operation:

Decrement and Jump if Not Zero

DJINZ decrements the location indicated by 1, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of 00H will underflow to
OFFH. No flags are affected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC to
the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, S0H, and 60H contain the values 01H, 70H, and 15H, respec-
tively. The instruction sequence,

DINZ 40H,LABEL__1
DINZ SOH,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL__2 with the values O0H, 6FH, and 15H in
the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.
The instruction sequence,

MOV R2,#8
TOGGLE: CPL P1.7
DINZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.
Each pulse will last three machine cycles; two for DINZ and one to alter the pin.

1101 } 1rrr l rrel.address

DINZ
(PC) «— (PC) + 2
(Rn) <= (Rn) — 1
IF (Rn) > Oor (Rn) <0
THEN
(PC) «— (PC) + rel

4-29

CHAPTER 4
Instruction Set

DJNZ direct,rel

Bytes: 3
Cycles: 2
Encoding: 1101] 0101 J [direct address l l rel. address]
Operation: DINZ
(PC) « (PC) + 2
(direct) <— (direct) — 1
IF (direct) > 0O or (direct) < 0
THEN
(PC) « (PC) + rel
INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH will overflow to 00H.
No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, nor the input pins.
Example: Register O contains 7TEH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,
INC @RO
INC RO
INC @RO
will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respective-
ly) OOH and 41H.
INC A
Bytes: 1
Cycles: 1
Encoding: | 0000|0100
Operation: INC

Ay @A) +1

4-30

CHAPTER 4
Instruction Set

INC Rn

Bytes:
Cycles:

Encoding:

Operation:

INC direct

Bytes:
Cycles:

Encoding:

Operation:

INC @Ri

Bytes:
Cycles:

Encoding:

Operation:

1
1

[oo000[1rrr]

INC
(Rn) <= (Rn) + 1

0000|0101 |

rdirect address

INC

(direct) €— (direct) + 1

1
1

[0o000]o011i]

INC

(Ri)) <= (RD) + 1

4-31

CHAPTER 4
Instruction Set

INC DPTR
Function: Increment Data Pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to O0H will increment
the high-order byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and OFEH, respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and O1H.
Bytes: 1
Cycles: 2
Encoding: 1010|0011
Operation: INC
(DPTR) « (DPTR) + 1
JB Dbit,rel
Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Exampie: The data present at input port 1 is 11001010B. The Accumulator holds 56 {(01010110B). The
instruction sequence,
JB P1.2,LABEL!l
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: ro 010 I 0000 } I bit address] [rel. address
Operation: JB
(PC) «— (PC) + 3
IF (bit) = 1
THEN

(PC) « (PC) + rel

4-32

CHAPTER 4
Instruction Set

JBC Dbit,rel
Function: Jump if Bit is set and Clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next
instruction. The bit will not be cleared if it is already a zero. The branch destination is comput-
ed by adding the signed relative-displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, not the input pin.

Example: The Accumulator holds 56H (01010110B). The instruction sequence,
JBC ACC.3,LABELI
JBC ACC.2,LABEL2
will cause program execution to continue at the instruction identified by the label LABEL2,
with the Accumulator modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding: (0 001] 000 0] [bit address1 [rel. address
Operation: JBC
(PC) «— (PC) + 3
IF (bit) = 1
THEN
(bit) €0

(PC) «— (PC) + rel

4-33

CHAPTER 4
Instruction Set

JC rel
Functlion: Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABELI
CPL C
JC LABEL 2
will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0100 [0000 | reladdress |
Operation: JC
(PC) «— (PC) + 2
IF (C) =1

THEN
(PC) < (PC) + rel

4-34

CHAPTER 4
Instruction Set

JMP @A+DPTR

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump indirect

Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and
load the resulting sum to the program counter. This will be the address for subsequent instruc-
tion fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order
eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data
Pointer is altered. No flags are affected.

An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will
branch to one of four AJMP instructions in a jump table starting at JMP__TBL:

MOV
IMP
JMP__TBL: AJMP
AJMP
AJMP
AJMP

DPTR,#JMP__TBL
@A +DPTR
LABELO

LABEL1

LABEL2

LABEL3

If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at

every other address.
1
2

o111 (0011

JMP
(PC) «— (A) + (DPTR)

4-35

CHAPTER 4
Instruction Set

JNB bit,rel

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JNC rel

Jump if Bit Not set

If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.

The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The
instruction sequence,

JNB PI1.3,LABELI
JNB ACC3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.
3
2

loo11]0000]| | bitaddess | | rel address |

INB
(PC) «— (PC) + 3
IF (bit) = 0

THEN (PC) < (PC) + rel.

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump if Carry not set

If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified.

The carry flag is set. The instruction sequence,

JNC LABELI1
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.

2
2

0101[0000 | | reladdress

INC
(PC) <= (PC) + 2
IF (C) =0
THEN (PC) « (PC) + rel

4-36

CHAPTER 4
Instruction Set

JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds 0O0H. The instruction sequence,
JNZ LABEL!
INC A
JNZ LABEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: 0111|0000 l rrel. address
Operation: INZ
(PC) «— (PC) + 2
IF (A)#0
THEN (PC) < (PC) + rel
JZ rel
Functlion: Jump if Accumulator Zero
Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally contains 01H. The instruction sequence,
JZ LABELI1
DEC A
JZ LABEL2
will change the Accumulator to 00H and cause program execution to continue at the instruc-
tion identified by the label LABEL2.
Bytes: 2
Cycles: 2
1
Enceding: f 0110 [0000 | [rel. address
Operation: JZ
(PC) «— (PC) + 2
IF (A)=0

THEN (PC) «— (PC) + rel

4-37

CHAPTER 4
Instruction Set

LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory address space.
No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label “SUBRTN” is assigned to program memory
location 1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 01H, and the PC will contain 1235H.

Bytes: 3
Cycles: 2
Encoding: | 0001|0010 | addri5-add8 | | addr7-addro

Operation: LCALL
(PC) «— (PC) + 3
(SP) < (SP) + 1
((SP)) <= (PCq.0)
(SP) «— (SP) + 1
((SP)) <= (PCys.9)
(PC) «— addrys59

4-38

CHAPTER 4
Instruction Set

LJMP addr16

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Long Jump

LIMP causes an unconditional branch to the indicated address, by loading the high-order and
low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.

The label “JMPADR” is assigned to the instruction at program memory location 1234H. The
instruction,

LIMP JMPADR

at location 0123H will load the program counter with 1234H.
3
2

0000][0010]| | addr15add8 | | addr7-addro

LIMP
(PC) «<— addrys.9

MOV <dest-byte>,<src-byte>

Function:

Description:

Example:

Move byte variable

The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data
present at input port 1 is 11001010B (OCAH).

MOV RO,#30H ;RO <= 30H
MOV A,@R0O ;A <= 40H
MOV RI,A :R1 <= 40H
MOV R,@Rl ;B <= 10H
MOV @R1,P1 ;RAM (40H) <= OCAH
MOV P2,Pl :P2 #0CAH

leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register
B, and OCAH (11001010B) both in RAM location 40H and output on port 2.

4-39

CHAPTER 4
Instruction Set

MOV ARn
Bytes:
Cycles:
Encoding:

Operation:

MOV A,direct
Bytes:

Cycles:
Encoding:

Operation:

MOV A,ACC is not a valid instruction.

MOV A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

MOV A, #data

Bytes:
Cycles:

Encoding:

Operation:

1
1

{111011rrr|

MOV
(A) <~ (Rn)

2
1

[1110]0101]

[direct addressj

MOV
(A) €« (direct)

1
1

1110 0111

MOV
(A) < ((Ri))

0111]0100 |

[immediate data J

MOV
(A) « #data

4-40

CHAPTER 4
Instruction Set

MOV RnA
Bytes:
Cycles:
Encoding:

Operation:

MOV Rn,direct
Bytes:

Cycles:
Encoding:

Operation:

MOV Rn,#data
Bytes:
Cycles:
Encoding:

Operation:

MOV direct,A
Bytes:
Cycles:
Encoding:

Operation:

MOV direct,Rn
Bytes:

Cycles:
Encoding:

Operation:

1111 | 1rrer|

MOV
(Rn) < (A)

2
2

l1010|1rrr|

MOV
(Rn) < (direct)

0111 [1rrr|

{ immediate data J

MOV
(Rn) «— #data

1111]/0101 |

l direct addressJ

MOV
(direct) «— (A)

1000 [1rrr|

l direct address]

MOV
(direct) «— (Rn)

4-41

CHAPTER 4
Instruction Set

MOV direct,direct

Bytes:
Cycles:
Encoding:

Operation:

MOV direct,@Ri
Bytes:
Cycles:
Encoding:

Operation:

3
2

1000|0101 | ﬁir. addr. (src)] [dir. addr. (dest) J

MOV
(direct) €«— (direct)

2
2

[1000[011i]

rdirect addr.

MOV
(direct) < ((Ri1))

MOV direct, # data

Bytes:
Cycles:
Encoding:

Operation:

MOV @RI,A
Bytes:
Cycles:
Encoding:

Operation:

MOV @Ri,direct
Bytes:
Cycles:
Encoding:

Operation:

3
2

0111 0101] l direct address [meediate data

MOV
(direct) «— #data

1111]011i]

MOV
(RD) < (A)

1010/ 011i| [directaddr.

MOV
((Ri)) ¢ (direct)

4-42

CHAPTER 4
Instruction Set

MOV @RI, #data
Bytes:
Cycles:
Encoding:

Operation:

2
1

[0 111] 011 J i immediate data

MOV
((RI)) «— #data

MOV <dest-bit>, <src-bit>

Function:

Description:

Example:

MOV C,bit
Bytes:
Cycles:
Encoding:

Operation:

MOV bit,C
Bytes:
Cycles:
Encoding:

Operation:

Move bit data

The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.

The carry flag is originally set. The data present at input Port 3 is 11000101B. The data
previously written to output Port 1 is 35H (00110101B).

MOV P13,C
MOV CP33
MOV P1.2,C

will leave the carry cleared and change Port 1 to 39H (00111001B).

10100010/ | bitaddress

MOV
(C) « (bit)

1001[0010] | bitaddress |

MoV
(bit) <= (C)

4-43

CHAPTER 4
Instruction Set

MOV DPTR,#data16

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,

MOV DPTR,#1234H

will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3
2

|1001]0000]| [immed.datats-8 | [immed.data7-0

MOV
(DPTR) «— #datays.g
DPH [0 DPL «— #data;s.g (] #data;q

4-44

CHAPTER 4
Instruction Set

MOVC A,@A+ <base-reg>

Function:

Description:

Example:

Move Code byte

The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumu-
lator contents and the contents of a sixteen-bit base register, which may be either the Data
Pointer or the PC. In the latter case, the PC is incremented to the address of the following
instruction before being added with the Accumulator; otherwise the base register is not al-
tered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may
propagate through higher-order bits. No flags are affected.

A value between 0 and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL__PC: INC A

MOVC A,@A+PC

RET

DB 66H
DB 77TH
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to O1H, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,2A+DPTR

Bytes:
Cycles:

Encoding:

Operation:

1
2

|1001]0011

MOVC
(A) <= ((A) + (DPTR))

4-45

CHAPTER 4
Instruction Set

MOVC A,@A + PC

Bytes:
Cycles:

Encoding:

Operation:

1
2

[1000[0011]

MOVC
(PC) « (PC) + 1
(A) < ((A) + (PC)

MOVX <dest-byte>,<src-byte>

Function:

Description:

Example:

Move External

The MOVX instructions transfer data between the Accumulator and a byte of external data
memory, hence the “X” appended to MOV. There are two types of instructions, differing in
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of RO or RI in the current register bank provide an eight-bit
address multiplexed with data on PO. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port
pins can be used to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2
outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the low-
order eight bits (DPL) with data. The P2 Special Function Register retains its previous con-
tents while the P2 output buffers are emitting the contents of DPH. This form is faster and
more efficient when accessing very large data arrays (up to 64K bytes), since no additional
instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOVX instruction using RO or R1.

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/
1/0O/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/0. Registers O and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@Rl1

MOVX @RO,A

copies the value 56H into both the Accumulator and external RAM location 12H.

4-46

CHAPTER 4
Instruction Set

MOVX A,@Ri
Bytes: 1
Cycles: 2
Encoding: | 11100011 |
Operation: MOVX
(A) «— ((Ri))
MOVX A,@eDPTR
Bytes: 1
Cycles: 2

Encoding: | 1110]0000 |

Operation: MOVX
(A) «— ((DPTR))

MOVX @Ri,A
Bytes: 1
Cycles: 2

Encoding: | 1111]001i|

Operation: MOVX

((Ri)) <= (A)
MOVX @DPTR,A
Bytes: 1
Cycles: 2

Encoding: | 11110000

Operation: MOVX
(DPTR) «— (A)

4-47

CHAPTER 4
Instruction Set

NOP
Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are
affected.

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must
be inserted. This may be done (assuming no interrupts are enabled) with the instruction
sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P27
Bytes: 1
Cycles: 1
Encoding: | 0000 [0000 |
Operation: NOP
(PC) «— (PC) + 1
MUL AB
Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in
B. If the product is greater than 255 (OFFH) the overflow flag is set; otehrwise it is cleared.
The carry flag is always cleared.
Example: Originally the Accumulator holds the value 80 (S0H). Register B holds the value 160 (OAOH).
The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumula-
tor is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: | 10100100
Operation: MUL
(A)7.0 ¢ (A) X (B)
(B)15-8

4-48

CHAPTER 4
Instruction Set

ORL <dest-byte> <src-byte>

Function:
Description:

Example:

ORL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Logical-OR for byte variables

ORL performs the bitwise logical-OR operation between the indicated variables, storing the
results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

If the Accumulator holds OC3H (11000011B) and RO holds SSH (01010101B) then the in-
struction,

ORL A,RO

will leave the Accumulator holding the value OD7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits
in any RAM location or hardware register. The pattern of bits to be set is determined by a
mask byte, which may be either a constant data value in the instruction or a variable computed
in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

will set bits 5, 4, and 1 of output Port 1.

0100[1rrr]

ORL
(A) < (A) V (Rn)

4-49

CHAPTER 4
Instruction Set

ORL Adirect

Bytes:
Cycles:

Encoding:

Operation:

ORL A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

ORL A,#data

Bytes:
Cycles:

Encoding:

Operation:

ORL direct,A

Bytes:
Cycles:
Encoding:

Operation:

ORL direct,#data
Bytes:
Cycles:
Encoding:

Operation:

0100[0101]

(direct addressJ

ORL
(A) < (A) V (direct)

1
1

[0100]o011i]

ORL
(A) < (A) V (Ri)

01000100]

f immediate data J

ORL
(A) «— (A) V #data

2
1
0100]0010| [diectaddress |
ORL
(direct) <— (direct) V (A)
3
2
0100 ‘ 001 L‘ | direct addr. I | immediate data

ORL
(direct) «— (direct) V #data

4-50

CHAPTER 4
Instruction Set

ORL C,<src-bit>

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state
otherwise . A slash (“/”’) preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.

Example: Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:
MOV CPl1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.

ORL C,bit
Bytes: 2
Cycles: 2

Encoding: 0111 [001 OJ l bit addressJ

Operation: ORL
(©) « (O V (i)

ORL C,/bit
Bytes: 2
Cycles: 2

Encoding: | 1010|0000 | | bitaddress |

Operation: ORL _
(C) « (C) V (bit)

4-51

CHAPTER 4
Instruction Set

POP direct
Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the
Stack Pointer is decremented by one. The value read is then transferred to the directly ad-
dressed byte indicated. No flags are affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and O1H, respectively. The instruction sequence,
POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this
point the instruction,
POP SP
will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
decremented to 2FH before being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding: | 1101|0000 | | diectaddress
Operation: POP

(direct) «<— ((SP))
(SP) «—=(SP) — 1

4-52

CHAPTER 4
Instruction Set

PUSH direct
Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied
into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affect-
ed.
Example: On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the
value 0123H. The instruction sequence,
PUSH DPL
PUSH DPH
will leave the Stack Pointer set to OBH and store 23H and OIH in internal RAM locations
OAH and OBH, respectively.
Bytes: 2
Cycles: 2
Encoding: [11000000] ! direct address !
Operation: PUSH
(SP)«(SP) + 1
((SP)) <« (direct)
RET
Function: Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing
the Stack Pointer by two. Program execution continues at the resulting address, generally the
instruction immediately following an ACALL or LCALL. No flags are affected.
Example: The Stack Pointer originally contains the value OBH. Internal RAM locations OAH and OBH
contain the values 23H and 01H, respectively. The instruction,
RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at
location 0123H.
Bytes: 1
Cycles: 2
Encoding: | 0010]0010]
Operation: RET

(PCys.8) <= ((SP))
(SP) «— (SP) — 1
(PCr.0) €~ ((SP))
(SP) «— (SP) — 1

4-53

CHAPTER 4
Instruction Set

RETI

Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores
the interrupt logic to accept additional interrupts at the same priority level as the one just
processed. The Stack Pointer is left decremented by two. No other registers are affected; the
PSW is not automatically restored to its pre-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which
the interrupt request was detected. If a lower- or same-level interrupt had been pending when
the RETI instruction is executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The Stack Pointer originally contains the value OBH. An interrupt was detected during the
instruction ending at location 0122H. Internal RAM locations OAH and OBH contain the
values 23H and O1H, respectively. The instruction,

RETI

will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes: 1
Cycles: 2

Encoding: [0011]0010]

Operation: RETI
(PCy5.8) «— ((SP))
(SP) «—(SP) — 1
(PCq.0) < ((SP))
(SP)«—(SP) — 1

RL A

Function: Rotate Accumulator Left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0
position. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1

Encoding: (00100011

Operation: RL
(A + D (An) n=0-6
(A0) «— (A7)

4-54

CHAPTER 4
Instruction Set

RLC A

Function:

Description:

Rotate Accumulator Left through the Carry flag

The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No
other flags are affected.

Example: The Accumulator holds the value OCSH (11000101B), and the carry is zero. The instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: | 0011]0011]
Operation: RLC
(An + 1)«—(An) n=0-6
(A0) « (C)
(C) «(AD)
RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.
Example: The Accumulator holds the value OC5H (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: | 0000|0011 |
Operation: RR
(An)«<— (A, +1) n=0-6
(A7) <« (A0)

4-55

CHAPTER 4
Instruction Set

RRC A
Function: Rotate Accumulator Right through Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right.
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7
position. No other flags are affected.
Example: The Accumulator holds the value 0CSH (11000101B), the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: | 0001|0011
Operation: RRC
(An)¢—(An+ 1) n=0-6
(A7) « (O)
(C) < (A0)
SETB <bit>
Function: Set Bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly
addressable bit. No other flags are affected.
Example: The carry flag is cleared. Output Port 1 has been written with the value 3¢H (00110100B). The
instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: 1101|0011
Operation: SETB
© <1

4-56

CHAPTER 4
Instruction Set

SETB bit
Bytes: 2
Cycles: 1
Encoding: | 1101]0010] [bitaddress
Operation: SETB
(bit) «— 1
SJMP rel
Function: Short Jump

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes
preceding this instruction to 127 bytes following it.

The label “RELADR?” is assigned to an instruction at program memory location 0123H. The
instruction,

SIMP RELADR

will assemble into location 0100H. After the instruction is executed, the PC will contain the
value 0123H.

(Note: Under the above conditions the instruction following SIMP will be at 102H. Therefore,
the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)

2
2

|1000] 0000 | rel addess |

SIMP
(PC) «— (PC) + 2
(PC) «— (PC) + rel

4-57

CHAPTER 4
Instruction Set

SUBB A, <src-byte>

Function:

Description:

Example:

SUBB A,Rn

Encoding:

Operation:

SUBB A,direct
Bytes:

Cycles:
Encoding:

Operation:

Subtract with borrow

SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed
for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction, so
the carry is subtracted from the Accumulator along with the source operand.) AC is set if a
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value, or a positive result when a positive number is
subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or imme-
diate.

The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry
flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should not be explicitly cleared by
a CLR C instruction.

1

i

[1001]1rrr|

SUBB
A<= @A) - ©) — Rn

1001]0101 | | directaddress

SUBB
(A) <= (A) — (C) — (direct)

4-58

CHAPTER 4
Instruction Set

SUBB A,@Ri
Bytes:
Cycles:

Encoding:

Operation:

SUBB A, #data

1
1

1001 011i]

SUBB
(A) < (A) = (©) — (Ri)

Bytes: 2
Cycles: 1
Encoding: 10010100 | [immediate data1
Operation: SUBB
(A) €« (A) — (C) — #data
SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No
flags are affected.
Example: The Accumulator holds the value 0OCSH (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value SCH (01011100B)
Bytes: 1
Cycles: 1
Encoding: | 1100[0100 |
Operation: SWAP

(A30) & (A1)

4-59

CHAPTER 4
Instruction Set

XCH A,<byte>

Function:
Description:

Example:

XCH A,Rn
Bytes:
Cycles:
Encoding:

Operation:

XCH A,direct
Bytes:
Cycles:
Encoding:

Operation:

XCH A,@RI
Bytes:
Cycles:
Encoding:

Operation:

Exchange Accumulator with byte variable

XCH loads the Accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination
operand can use register, direct, or register-indirect addressing.

RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in
the accumulator.

1100 | 1rrr|

XCH
(A) Z Rn)

1100|0101 l [direct address

XCH
(A) Z (direct)

1
1

1100 011i]

XCH
(A) Z ((Ri)

4-60

CHAPTER 4
Instruction Set

XCHD A,@Ri

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Exchange Digit

XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the
specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags
are affected.

RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCHD A,@RO

will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the
Accumulator.

1
1

1101]011i]

XCHD
(A3.0) Z ((Riz.0)

XRL <dest-byte>,<src-byte>

Function:

Description:

Example:

Logical Exclusive-OR for byte variables

XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,
storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, nor the input pins.)

If the Accumulator holds OC3H (11000011B) and register O holds OAAH (10101010B) then
the instruction,

XRL ARO

will leave the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be complement-
ed is then determined by a mask byte, either a constant contained in the instruction or a
variable computed in the Accumulator at run-time. The instruction,

XRL P1,#00110001B

will complement bits 5, 4, and O of output Port 1.

4-61

CHAPTER 4
Instruction Set

XRL A,Rn

Bytes:
Cycles:

Encoding:

Operation:

XRL A,direct

Bytes:
Cycles:

Encoding:

Operation:

XRL A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

XRL A,#data

Bytes:
Cycles:

Encoding:

Operation:

XRL direct,A

Bytes:
Cycles:

Encoding:

Operation:

1
1

[0110'1rrr]

XRL
(A) <= (A) ¥ (Rn)

0110

0101 |

| direct address J

XRL

(A) < (A) ¥ (direct)

0110011 |

XRL

(A) < (A) ¥ (R)

0110

0100 |

[immediate data J

XRL

(A) <= (A) ¥ #data

01100010]

| direct address

XRL

(direct) <— (direct) ¥ (A)

4-62

CHAPTER 4
Instruction Set

XRL direct,#data

Bytes: 3
Cycles: 2
Encoding: 0110 I 0011] | direct address I i immediate data

Operation: XRL
(direct) €<— (direct) ¥ #data

4-63

CHAPTER 5

Software Routines 5-1

8051 Programming Techniques 5-1
Radix Conversion Routines 5-1
Multiple Precision Arithmetic 5-2
Table Look-Up Sequences 5-2
Saving CPU Status During Interrupts 5-4
Passing Parameters on the Stack 5-4
N-Way Branching 5-6
Computing Branch Destinations at Run Time 5-7
In-Line-Code Parameter-Passing 5-8

Peripheral Interfacing Techniques 5-9
1/0 Port Reconfiguration (First Approach) 5-9
/O Port Reconfiguration (Second Approach) 5-10
Simulating a Third Priority Level in Software 5-11
Software Delay Timing 5-11
Serial Port and Timer Mode Configuration 5-12
Simple Serial /O Drivers 5-12
Transmitting Serial Port Character Strings 5-13
Recognizing and Processing Special Cases 5-13
Buffering Serial Port Output Characters 5-14
Synchronizing Timer Overflows 5-15

Reading a Timer/Counter “On-the-Fly” 5-16

CHAPTER 5

|

Software Routines

Chapter 5 contains two sections:

* 8051 Programming Techniques
* Peripheral Interfacing Techniques.

The first section has 8051 software examples for some
common routines in controller applications. Some rou-
tines included are multiple-precision arithmetic and table
look-up techniques.

Peripheral Interfacing Techniques include routines for
handling the 8051’s I/O ports, serial channel and timer/
counters. Discussed in this section is I/O port reconfigu-
ration, software delay timing, and transmitting serial port
character strings along with other routines.

8051 PROGRAMMING TECHNIQUES

Radix Conversion Routines

The divide instruction can be used to convert a number
from one radix to another. BINBCD is a short subroutine
to convert an 8-bit unsigned binary integer in the accumu-
lator (between 0 & 255) to a 3-digit (2 byte) BCD repre-
sentation. The hundred's digitis returned in one variable
(HUND) and the ten’s and one’s digits returned as
packed BCD in another (TENONE).

;

; BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACCUMULATOR
; TO 3-DIGIT PACKED BCD FORMAT.
; HUNDREDS’ PLACE LEFT IN VARIABLE ‘HUND’,
TENS’ AND ONES’ PLACES IN ‘TENONE’.
HUND DATA 21H
TENONE DATA 22H
BINBCD: MOV B, #100 ;DIVIDED BY 100 TO
DIV AB ;DETERMINE NUMBER OF HUNDREDS
MOV HUND, A
MoV A, #10 ;DIVIDE REMAINDER BY TEN TO
XCH A,B ;DETERMINE NUMBER OF TENS LEFT
DIV AB ;TEN’S DIGIT IN ACC, REMAINDER IS
;ONE’S DIGIT
SWAP A
ADD A,B ;PACK BCD DIGITS IN ACC
MoV TENONE, A
RET

The divide instruction can also separate data in the
accumulator into sub-fields. For example, dividing
packed BCD data by 16 will separate the two nibbles,
leaving the high-order digit in the accumulator and the
low-order digit (remainder) in B. Eachis right-justified, so

the digits can be processed individually. This example
receives two packed BCD digits in the accumulator,
separates the digits, computes their product, and returns
the product in packed BCD format in the accumulator.

’

;DIVIDE INPUT BY 16

;A & B HOLD SEPARATED DIGITS

; (EACH RIGHT JUSTIFIED IN REGISTER).
;A HOLDS PRODUCT IN BINARY FORMAT

(DECIMAL) = 0 TO 63H)

;DIVIDE PRODUCT BY 10

; MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR
; FIND THEIR PRODUCT, AND RETURN PRODUCT
; IN PACKED BCD FORMAT IN ACCUMULATOR
;MULBCD: MOV B, #10H

DIV AB

MUL AB

; (0 TO 99
MOV B, #10
DIV AB

;A HOLDS NUMBER OF TENS, B HOLDS

;REMAINDER

5-1

CHAPTER 5
Software Routines

SWAP A
ORL A,B
RET

;PACK DIGITS

Multiple Precision Arithmetic

The ADDC and SUBB instructions incorporate the previ-
ous state of the carry (borrow) flag to allow multiple-
precision calculations by repeating the operation with
successively higher-order operand bytes. If the input
data for a multiple-precision operation is an unsigned

string of integers, the carry flag will be set upon comple-
tion if an overflow (for ADDC) or underflow (for SUBB)
occurs. With two’s complement signed data, the most
significant bit of the original input data’s most significant
byte indicates the sign of the string, so the overflow flag
(OV) will indicate if overflow or underflow occurred.

;

; SUBSTR SUBTRACT STRING INDICATED BY R1
H FROM STRING INDICATED BY RO TO
; PRECISION INDICATED BY R2.
; CHECK FOR SIGNED UNDERFLOW WHEN DONE.
SUBSTR: CLR C ;BORROW = 0.
SUBS1: MOV A, QRO ; LOAD MINUEND BYTE
SUBB A,@R1 ; SUBTRACT SUBTRAHEND BYTE
MOV @RO,A ;STORE DIFFERENCE BYTE
INC RO ;BUMP POINTERS TO NEXT PLACE
INC R1
DJINZ R2, SUBS1 ;LOOP UNTIL DONE
; WHEN DONE, TEST IF OVERFLOW OCCURRED
; ON LAST ITERATION OF LOOP.
JNB OV, OV_OK
; .- (OVERFLOW RECOVERY ROUTINE)
OV-OK: RET ; RETURN

Table Look-Up Sequences

The two versions of the MOVC instructions are used as
part of a 3-step sequence to access look-up tables in
ROM. To use the DPTR version, load the Data Pointer
with the starting address of a look-up table; load the
accumulator with (or compute) the index of the entry
desired; and execute MOVC A, @A + DPTR. The data
pointer may be loaded with a constant for short tables, or
to allow more complicated data structures, and tables
with more than 256 entries, the values for DPH and DPL
may be computed or modified with the standard arithme-
tic instruction set.

The PC-based version is used with smaller, “local”
tables, and has the advantage of not affecting the data
pointer. This makes it useful in interrupt routines or other
situations where the DPTR contents might be significant.
Again, a look-up sequence takes three steps: load the
accumulator with the index; compensate for the offset
from the look-up instruction’s address to the start of the
table by adding that offset to the accumulator; then
execute the MOVC A,@A + PC instruction.

As a non-trivial situation where this instruction would
be used, consider applications wh ich store large multi-

dimensional look-up tables of dot matrix patterns, non-
linear calibration parameters, and so on in the linear
(one-dimensional) program memory. To retrieve data
from the tables, variables representing matrix indices
must be converted to the desired entry’s memory ad-
dress. For a matrix of dimensions (MDIMEN x NDIMEN)
starting at address BASE and respective indices INDEXI
and INDEXJ, the address of element (INDEXI, INDEXJ)
is determined by the formula,

Entry Address = [BASE + (NDIMEN x INDEXI) + INDEXJ]

The subroutine MATRX1 can access an entry in any
array with less than 255 elements, e.g., an 11x21 array
with 231 elements. The table entries are defined using
the Data Byte (“DB”) directive, and will be contained in
the assembly object code as part of the accessing
subroutine itself.

To handle the more general case, subroutine MATRX2
allows tables to be unlimited in size, by combining the
MUL instruction, double-precision addition, and the data
pointer-based version of MOVC. The only restriction is
that each index be between 0 and 255.

5-2

CHAPTER 5
Software Routines

MATRX

Ne N e e N

INDEXI
INDEXJ

;

MATRX1:

~e ve Ne

BASEl:

MATRX2:

BASE2

LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP

TABLE IN PROGRAM MEMORY INTO ACCUMULATOR

USING LOCAL TABLE LOOK-UP INSTRUCTION, ‘MOVC A,@A + PC’.
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO

BE SMALL, I.E. LESS THAN ABOUT 255 ENTRIES.

TABLE USED IN THIS EXAMPLE IS 11 x 21.

DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,

[(BASE ADDRESS) + (21 X INDEXI) + (INDEXJ)]

EQU R6 ;FIRST COORDINATE OF ENTRY (0-10).
DATA 23H ; SECOND COORDINATE OF ENTRY (0-20).
MOV A, INDEXI

MoV B, #21

MUL AB ; (21 X INDEXI)

ADD A, INDEXJ ;ADD IN OFFSET WITHIN ROW

ALLOW FOR INSTRUCTION BYTE BETWEEN “MOVC” AND

ENTRY (0,0).

INC A

Move A,@A + PC

RET

DB 1 ; (entry 0,0)

DB 2 ; (entry 0,1)

DB 21 ; (entry 0,20)

DB 22 ; (entry 1,0)

DB 42 ; (entry 1,20)

DB 231 ; (entry 10,20)

MOV A, INDEXI ; LOAD FIRST COORDINATE

MoV B, #NDIMEN

MUL AB ; INDEXI X NDIMEN

ADD A, #LOW (BASE2) ;ADD IN 16-BIT BASE ADDRESS
MoV DPL,A

MOV A,B

ADDC A, #HIGH (BASE2)

MOV DPH,A ;DPTR=(BASE ADDR) + (INDEXI + NDIMEN)
MOV A, INDEXJ

MovC A,QA + DPTR ;ADD INDEXJ AND FETCH BYTE
RET

DB 0 ; (entry 0,0)

DB 0 ; (entry 0,1)

DB 0 ; (entry O, NDIMEN-1)

DB 0 ; (entry 1,0)

DB 0 ; (entry 1, NDIMEN-1)

DB 0 ; (entry MDIMEN-1, NDIMEN-1)

CHAPTER 5
Software Routines

Saving CPU Status During Interrupts

When the 8051 hardware recognizes an interrupt re-
quest, program control branches automatically to the
corresponding service routine, by forcing the CPU to
process a Long CALL (LCALL) instruction to the
appropriate address. The re turn addressis stored on
the top of the stack. After completing the service
routine, an RETI instruction returns the processor to
the background program at the point from which it was
interrupted.

Interrupt service routines must not change any variable
or hardware registers modified by the main program, or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error. An
example of this will be given later in this section, in the
second method of /O port reconfiguration.) Resources
used or altered by the service routine (Accumulator,
PSW, etc.) must be saved and restored to their previous
value before returning from the service routine. PUSH
and POP provide an efficient and convenientway to save
such registers on the stack.

;

; LOC_TMP EQU s ;REMEMBER LOCATION COUNTER
ORG 0003H ;STARTING ADDRESS FOR INTERRUPT ROUTINE
LJIMP SERVER ;JUMP TO ACTUAL SERVICE ROUTINE LOCATE
; ELSEWHERE
ORG LOC_TMP ;RESTORE LOCATION COUNTER
SERVER: PUSH PSW
PUSH AcC ;SAVE ACCUMULATOR (NOTE DIRECT ADDRESS
;NOTATION)
PUSH B ;SAVE B REGISTER
PUSH DPL ;SAVE DATA POINTER
PUSH DPH ;
MoV PSW, #00001000B ;SELECT REGISTER BANK 1
pPoP DPH ;RESTORE REGISTERS IN REVERSE ORDER
POP DPL
popP B
POP ACC
POP PSW ;RESTORE PSW AND RE-SELECT ORIGINAL
;REGISTER BANK
RETI ;RETURN TO MAIN PROGRAM AND RESTORE
; INTERRUPT LOGIC
Aggg' If the SP register held 1FH when the interrupt was
detected, then while the service routine was in progress
7FH the stack would hold the registers shown in Figure 5-1;
SP would contain 26H. This is the most general case; if
26H DPH l4—— (SP) the service routine doesn't alter the B-register and data
25H DPL pointer, for example, the instruction saving and restoring
24H P those registers could be omitted.
23H AcC Passing Parameters on the Stack
22H PSW
21H PC (HIGH) The stack may also pass parameters to and from subrou-
20H PC (LOW) tines. The subroutine canindirectly address the parame-
1EH ters derived from the contents of the stack pointer, or
simply pop the stack into registers before processing.
00H 09757A-002A
Figure 5-1. Stack Contents During Interrupt

5-4

CHAPTER 5
Software Routines

HEXASC: MOV RO, SP
DEC RO
DEC RO
XCH A, @RO
ANL A, #0FH
ADD A, #2
MOvC A,@A + PC
XCH A, @RO
RET

ASCTBL: DB ro’
DB ‘1
DB 22
DB '3
DB rqr
DB ‘5
DB NCH
DB YA
DB ‘8’
DB r9r
DB ‘A’
DB ‘B’
DB rcr
DB ‘D’
DB ‘E’
DB ‘F

;ACCESS LOCATION PARAMETER PUSHED ONTO
; STACK

;READ INPUT PARAMETER AND SAVE

; ACCUMULATOR

;MASK ALL BUT LOW-ORDER 4 BITS
;ALLOW FOR OFFSET FROM MOVC TO TABLE
;READ LOOK-UP TABLE ENTRY

;PASS BACK TRANSLATED VALUE AND RESTORE
; ACCUMULATOR

;RETURN TO BACKGROUND PROGRAM

;ASCII CODE FOR OOH

;ASCII CODE FOR Ol1lH

;ASCII CODE FOR 0Z2H

;ASCII CODE FOR 03H

;ASCII CODE FOR 04H

;ASCII CODE FOR O5H

;ASCII CODE FOR O6H

;ASCII CODE FOR O07H

;ASCII CODE FOR 0O8H

;ASCII CODE FOR O9H

;ASCII CODE FOR OAH

;ASCII CODE FOR OBH

;ASCII CCDE FOR OCH

;ASCII CODE FOR ODH

;ASCII CODE FOR OEH

;ASCII CODE FOR OFH

One advantage here is simplicity. Variables need not be
allocated for specific parameters, a potentially large
number of parameters may be passed, and different
calling programs may use different techniques for deter-
mining or handling the variables.

For example, the subroutine HEXASC converts a hexa-
decimal value to ASCII code for its low-order digit. It first
reads a parameter stored on the stack by the calling
program, then uses the low-order bits to access a local
16-entry look-up table holding ASCII codes, stores the
appropriate code back in the stack and then returns.
The accumulator contents are left unchanged.

The background program may reach this subroutine with
several different calling sequences, all of which PUSH a
value before calling the routine and POP the result to any
destination register or port later. There is even the option
of leaving a value on the stack if it won't be needed until
later. The example below converts the three-digit BCD
value computed in the Radix Conversion example above
to athree-character string, calling a subroutine SP_OUT
to output an 8-bit code in the accumulator.

PUSH HUND

CALL HEXASC
POP acc
CALL SP_OUT
PUSH TENONE
CALL HEXASC
MOV A, TENONE
SWAP A

PUSH Acc
CALL HEXASC
poP AcC
CALL SP_OUT
POP AcC
CALL SP_OUT

; CONVERT HUNDREDS DIGIT

; TRANSMIT HUNDREDS CHARACTER

;CONVERT ONE’S PLACE DIGIT
;BUT LEAVE ON STACK!

;RIGHT-JUSTIFY TEN’S PLACE

;CONVERT TEN’S PLACE DIGIT

; TRANSMIT TEN’S PLACE CHARACTER

; TRANSMIT ONE’S PLACE CHARACTER

5-5

CHAPTER 5
Software Routines

N-Way Branching

There are several different means for branching to
sections of code determined or selected at run time.
(The single destination addresses incorporated into
conditional and unconditional jumps are, of course, fixed
at assembly time.) Each has advantages for different
applications.

In a typical N-way branch situation, the potential destina-
tions are generally known at assembly time. One of a
number of small routines is selected according to the
value of an index variable determined while the program
is running. The most efficient way to solve this problem
is with the MOVC and an indirect jump instruction, using
a short table of offset values in ROM to indicate the
relative starting addresses of the several routines.

JMP @A + DPTR is an instruction which performs an
indirect jump to an address determined during program

execution. The instruction adds the 8-bit unsigned ac-
cumulator contents with the contents of the 16-bit data
pointer, just like MOV A,@A + DPTR. The resulting sum
is loaded into the program counter and is used as the
address for subsequent instruction fetches. Again, a 16-
bit addition is performed: a carry-out from the low-order
eight bits may propagate through the higher-orderbits. In
this case, neither the accumulator contents nor the data
pointer is altered.

The example subroutine below reads a byte of RAM into
the accumulator from one of four alternate address
spaces, as selected by the contents of the variable
MEMSEL. The address of the byte to be read is deter-
mined by the contents of RO (and optionally R1). It might
find use in a printing terminal application, where four
different model printers all use the same ROM code but
use different types (and sizes) of buffer memory for
different speeds and options.

’

;MEMSEL EQU R3
JUMP_4: MoV A,MEMSEL
MOV DPTR, #IMPTBL
MovC A,@A + DPTR
JMP @A + DPTR
JMPTBL: DB MEMSP0-JMPTBL
DB MEMSP1-JMPTBL
DB MEMSP2-JMPTBL
DB MEMSP 3-JMPTBL
MEMSPO: MOV A,@RO
RET
MEMSP1: MOVX A, QRO
RET
MEMSP2: MOV DPL, RO
MoV DPH,R1
MOVX A,@DPTR
RET
MEMSP3: MOV A,R1
ANL A, #07H
ANL P1,#11111000B
ORL P1l,A
MOVX A,QRO
RET

;READ FROM INTERNAL RAM

;READ FROM 256 BYTE EXTERNAL RAM

;READ 64K BYTE EXTERNAL RAM

;READ 4K BYTE EXTERNAL RAM

To use this approach, the size of the jump table plus the
length of the alternate routines must be less than 256
bytes. The jump table and routines may be located
anywhere in program memory and are independent of
256-byte program memory pages.

For applications where up to 128 destinations must be
selected, all residing in the same 2K page of program
memory, the following technique may be used. In the

printing terminal example, this sequence could process
128 different codes for ASCII characters arriving via the
8051 serial port.

The destinations in the jump table (PROC00-PROC7F)
are not all necessarily unique routines. A large number
of special control codes could each be processed with
their own unique routine, with the remaining printing
characters all causing a branch to a common routine for
entering the character into the output queue.

5-6

CHAPTER 5
Software Routines

’

OPTION EQU R3
JMP128: MoV A,OPTION
RL A
MOV DPTR, #INSTBL
JMP @A + DPTR
INSTBL: AJMP PROCO00
AJMP PROCO1
AJMP PROCO02
AJMP PROCTE
AJMP PROC7F

JMULTIPLY BY 2 FOR 2-BYTE JUMP TABLE
;FIRST ENTRY IN JUMP TABLE
;JUMP INTO JUMP TABLE

;128 CONSECUTIVE
;AJMP INSTRUCTIONS

Computing Branch Destinations
at Run Time

In some rare situations, 128 options are insufficient, the
destination routines may cross a 2K page boundary, ora
branch destination is not known at assembly time (for
whatever reason), and therefore cannot be easily in-
cluded in the assembled code. These situations can all
be handled by computing the destination address at run-
time with standard arithmetic or table look-up instruc-
tions, then performing anindirect branch to that address.

There are two simple ways to execute this last step,
assuming the 16-bit destination address has already
been computed. The firstis to load the address into the
DPH and DPL registers, clear the accumulator and
branch using the JMP @A + DPTR instruction; the
second is to push the destination address onto the stack,
low-order byte first (so as to mimic a call instruction) then
pop that address into the PC by performing a return
instruction. This also adjusts the stack pointer to its
previous value. The code segment below illustrates the
latter possibility.

’

;FIRST ADDRESS TABLE ENTRY
;LOAD INDEX INTO TABLE

JMULTIPLY BY 2 FOR 2-BYTE JUMP TABLE

;FIX BASE IF INDEX >127.

;SAVE ADJUSTED ACC FOR SECOND READ
LOW-ORDER BYTE FIRST

;GET LOW-ORDER BYTE FROM TABLE

;RELOAD ADJUSTED ACC
;GET HIGH-ORDERED BYTE FROM TABLE

;UP TO 256 CONSECUTIVE DATA
;WORDS INDICATING STARTING ADDRESSES

RTEMP EQU R7
JMP256: MOV DPTR, #ADRTBL

MOV A,OPTION

CLR C

RLC A

JNC LOW128

INC DPH
LOW128: MOV RTEMP, A

INC A ;READ

MOvC A,@A + DPTR

PUSH ACC

MOV A, RTEMP

MOvC A,@A + DPTR

PUSH ACC
; THE TWO ACC PUSHES HAVE PRODUCED
; A “RETURN ADDRESS” ON THE STACK WHICH CORRESPONDS
; TO THE DESIRED STARTING ADDRESS.
; IT MAY BE REACHED BY POPPING THE STACK
; INTO THE PC.

RET
; e
ADRTBL: DW PROCOO

DW PROCO1

DW PROCFF

CHAPTER 5
Software Routines

In-Line-Code Parameter-Passing

Parameters can be passed by loading appropriate regis-
ters with values before calling the subroutine. This
technique is inefficient if a lot of the parameters are
constants, since each would require a separate register
to carry it, and a separate instruction to load the register
each time the routine is called.

If the routine is called frequently, a more code-efficient
way to transfer constants is “in-line-code” parameter-
passing. The constants are actually part of the program
code, immediately following the call instruction. The
subroutine determines where to find them fromthe return
address on the stack, and then reads the parameters it
needs from program memory.

For example, assume a utility named ADD-BCD adds a
16-bit packed-BCD constant with a 2-byte BCD variable

in internal RAM and stores the sum in a different 2-byte
buffer. The utility must be given the constant and both
buffer addresses. Rather than using four working regis-
ters to carry this information, all 4 bytes could be inserted
into program memory each time the utility is called.
Specifically, the calling sequence below invokes the
utility to add 1234 (decimal) with the string at internal
RAM address 56H, and store the sum in a buffer at
location 78H.

The ADDBCD subroutine determines at what point the
call was made by popping the return address from the
stack into the data pointer high- and low-order bytes. A
MOVC instruction then reads the parameters from pro-
gram memory as they are needed. When done,
ADDBCD resumes execution by jumping to the instruc-
tion following the last parameter.

CALL

ADDBCD

DW 1234H
DB 56H
DB 78H

;

ADDBCD: POP DPH
POP DPL
MOV A, #2
MovC A,Q@A + DPTR
MOV RO,A
MOV A, #3
MovcC A,@A + DPTR
MoV R1,A
MOV A, #1
MOVC A,QA + DPTR
ADD A, @RO
DA A
MoV @R1,A
INC RO
INC R1
CLR A
MOVC A,QA + DPTR
ADDC A, @RO
DA -\
MoV @R1,A
MOV A, #4
JMP @A + DPTR

;BCD CONSTANT

; SOURCE STRING ADDRESS
;DESTINATION STRING ADDRESS
; CONTINUATION OF PROGRAM

;POP RETURN ADDRESS INTO DPTR

; INDEX FOR SOURCE STRING PARAMETER
;GET SOURCE STRING LOCATION

; INDEX FOR DESTINATION STRING PARAMETER
;GET DESTINATION ADDRESS

;INDEX FOR 16-BIT CONSTANT LOW BYTE
;GET LOW-ORDER VALUE

;COMPUTE LOW-ORDER BYTE OF SUM
;DECIMAL ADJUST FOR ADDITION

;SAVE IN BUFFER

; INDEX FOR HIGH-BYTE = 0
;GET HIGH-ORDER CONSTANT

;DECIMAL ADJUST FOR ADDITION

;SAVE IN BUFFER

; INDEX FOR CONTINUATION OF PROGRAM
;JUMP BACK INTO MAIN PROGRAM

5-8

CHAPTER 5
Software Routines

This example illustrates several points:

1. The “subroutine” does not end with a normal return
statement; instead, an indirect jump relative to the
data pointer returns execution to the first instruction
following the parameter list. The two initial POP
instructions correct the stack-pointer contents.

2. Either an ACALL or LCALL works with the subrou-
tine, since each pushes the address of the next
instruction or data byte onto the stack. The call may
be made from anywhere in the full 8051 address
space, since the MOVC instruction accesses all 64K
bytes.

3. The parameters passed to the utility can be listed in
whateverorder is most convenient, which may not be
that inwhich they're used. The utility has essentially
“random access” to the parameter list, by loading the
appropriate constant into the accumulator before
each MOVC instruction.

4. Other than the data pointer, the whole calling and
processing sequence only affects the accumulator,
PSW and pointer registers. The utility could have
pushed these registers onto the stack (after popping
the parameter list starting address), and popped
before returning.

Passing parameters through in-line-code can be used in
conjunction with other variable passing techniques.

The utility can also get input variables from working
registers or from the stack, and return output variables to
registers or to the stack.

PERIPHERAL INTERFACING TECHNIQUES
1/0 Port Reconfiguration (First Approach)

I/O ports must often transmit or receive parallel data in
formats other than as 8-bit bytes. For example, if an
application requires three 5-bit latched output ports
(called X, Y, and Z), these “virtual” ports could be mapped
onto the pins of “physical” ports 1 and 2 (see example at
bottom of page).

This pinassignment leaves P2.7 free foruse as atest pin,
input data pin, or control output through software.

Notice that the bits of port Z are reversed. The highest-
order port Z pin corresponds to pin P2.2, and the lowest-
order pin of port Z is P2.6, due to PC board layout
considerations. When connecting an 8051 to an imme-
diately adjacent keyboard column decoder or another
device with weighted inputs, the corresponding pins may
not be aligned. The interconnections must be
“scrambled” to compensate either with interwoven circuit
board traces or through software (as shown below and
on the following page).

PORT ‘Z" PORT “Y” PORT “X"
- |Pzo Pz1 Pz2 PZ3 Pza |PYa PY3 PY2 PY1 PY0 [PX4 PX3 PX2 PX1 PX0
P2.7 |P2.6 P25 P2.4 P2.3 P2.2[P2.1 P2.0 P1.7 P1.6 P15[P1.4 P1.3 P1.2 P1.1P1.0
PX MAP DATA 20H
PY MAP DATA 21H
PZ_MAP DATA 22H
IOUT_PX: ANL A,#00011111B ;CLEAR BITS ACC.7 - ACC.5
Mov PX_MAP,A ;SAVE DATA IN MAP BYTE
ACALL OouT_P1 ;UPDATE PORT 1 OUTPUT LATCH
RET

é)UT___PY: ;4.0V PY_MAP A ;SAVE IN MAP BYTE
ACALL OUT_P1 ;UPDATE PORT 1
ACALL OUT_P2 ;AND PORT 2 OUTPUT LATCHES
RET

IOUT_PZ: ;;OV ;;_MAP,A ;SAVE DATA IN MAP BYTE
ACALL OUT_P2 ;UPDATE PORT 2.
RET

5-9

CHAPTER 5
Software Routines

OUT_P1: MoV A,PY_MAP
SWAP A
RL A
ANL A, #11100000B
ORL A,PX_MAP
MOV P1,A
RET

OUT_P2: MOV C,PZ_MAP.O
RLC A
MOV C,PZ_MAP.1
RLC A
MoV C,PZ_MAP.2
RLC A
MOV C,PZ_MAP.3
RLC A
MOV C,PZ_MAP.4
RLC A
MoV C,PZ_MAP.4
RLC A
MOV C,PZ_MAP.3
RLC a
SETB acc.7
MOV P2.A
RET

;OUTPUT ALL P1 BITS

;SHIFT PY_MAP LEFT 5 BITS
;MASK OUT GARBAGE
; INCLUDE PX_MAP BITS

;LOAD CY WITH P2.6 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.5 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.4 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.3 BIT
;AND SHIFT INTO ACC.

;LOAD CY WITH P2.2 BIT
;AND SHIFT INTO ACC.

;LOAD CY WITH P2.1 BIT

;AND SHIFT INTO ACC.
;LOAD CY WITH P2.0 BIT
;AND SHIFT INTO ACC.

; (ASSUMING INPUT ON P2.7)

Writing to the virtual ports must not affect any other pins.
Since the virtual output algorithms are non-trivial, a
subroutine is needed for each port: OUT_PX, OUT_PY
and OUT_PZ. Each is called with data to output right-
justified in the accumulator, and any data in bits ACC.7-
ACC .5 isinsignificant. Each subroutine savesthe datain
a “map” variable for the virtual port, then calls other
subroutines which use the data in the various map bytes
to compute and output the 8-bit pattern needed for each
physical port affected. The two level structure of the
above subroutines can be modified somewhat if code
efficiency and execution speed are critical: incorporate
the code shown as subroutines OUT_P1 and OUT_P2
directly into the code for OUT_PX and OUT_PZ, inplace
of the corresponding CALL instructions. OUT_PY would
not be changed, but now the destinations for its ACALL
instructions would be alternate entry points in OUT_PX
and OUT_PZ, instead of isolated subroutines.

1/0 Port Reconfiguration
(Second Approach)

A trickier situation arises if two sections of code which
write to the same port or register, or call virtual output
routines like those above, need to be executed at differ-
ent interrupt levels. For example, suppose the back-
ground program wants to rewrite Port X (using the port
associations in the previous example), and has com-
puted the bit pattern needed for P1. An interrupt is

detected just before the MOV P1,A instruction, and the
service routine tries to write Port Y. The service routine
would correctly update P1 and P2, but upon returning
to the background program P1 is immediately re-
written with the data computed before the interrupt! Now
pins P2.1 and P2.0 indicate (correctly) data written to port
Y in the interrupt routine, but the earlier data written to
P.7-P1.5is no longer valid. The same sort of confusion
could arise if a high-level interrupt disrupted such an
output sequence.

One solution is to disable interrupts around any section
of code which must not be interrupted (called a “critical
section”), but this would adversely affect interrupt la-
tency. Another is to have interrupt routines set or clear a
flag (“semaphore”) when a common resource is altered
— a rather complex and elaborate system.

An easier way to ensure that any instruction which writes
the port X field of P1 does not change the port Y field pins
from their state at the beginning of that instruction, is
shown next. A number of 8051 operations read, modify,
and write the output port latches all in one instruction.
These are the arithmetic and logical instructions (INC,
DEC, ANL, ORL, etc.), where an addressed byte is both
the destination variable and one of the source operands.
Using these instructions, instead of data moves, elimi-
nates the critical section problem entirely.

CHAPTER 5
Software Routines

OUT_PX: ANL P1, 4111000008
ORL P1,A
RET
OUT_PY: MOV B, #20H
MUL AB
ANL P1,#00011111B
ORL P1,A
MoV A,B
ANL P2,41111100B
ORL P2,A
RET
OUT_PZ: RRC A
MOV p2.6,C
RRC A
MOV p2.5,C
RRC A
MOV P2.4,C
RRC A
MOV P2.3,C
RRC A
MoV P2.2,C
RET

;CLEAR BITS P1.4-P1.0
;SET P1 PIN FOR EACH ACC BIT SET

JSHIFT B A LEFT 5 BITS
;CLEAR PY FIELD OF PORT 1
;SET PY BITS ON PORT 1
;"LOAD 2 BITS SHIFTED INTO B
;AND UPDATE P2

;MOVE ORIGINAL ACC.0 INTO
;AND STORE TO PIN P2.6.
;MOVE ORIGINAL ACC.1 INTO
;AND STORE TO PIN P2.5.
;MOVE ORIGINAL ACC.2 INTO
;AND STORE TO PIN P2.4.
;MOVE ORIGINAL ACC.3 INTO
;AND STORE TO PIN P2.3.
JMOVE ORIGINAL ACC.4 INTO
;AND STORE TO PIN P2.2.

cY

CY

Ccy

Ccy

CcY

Simulating a Third Priority Level
in Software

Some applications require more than the two priority
levels that are provided by on-chip hardware in 8051
devices. Inthese cases, relatively simple software can
be written to produce the same effect as a third priority
level.

First, interrupts that are to have higher priority than 1 are
assigned to priority 1 inthe IP (Interrupt Priority) register.
The service routines for priority 1 interrupts that are
supposed to be interruptible by “priority 2” interrupts are
written to include the following code:

PUSH IE
MOV IE, #MASK
CALL LABEL
; .
H (execute service routine)
POP IE
RET
LABEL: RETI

As soon as any priority 1 interrupt is acknowledged, the
IE (Interrupt Enable) registeris re-defined as asto disable
all but “priority 2" interrupts. Then, a CALL to LABEL
executes the RETI instruction, which clears the priority 1

interrupt-in-progress flip-flop. At this point any priority 1
interrupt that s enabled can be serviced, but only “priority
2" interrupts are enabled.

POPping IE restores the original enable byte. Then a
normal RET (rather than another RETI) is used to termi-
nate the service routine. The additional software adds 10
ps (at 12 MHz) to priority 1 interrupts.

Software Delay Timing

Many 8051 applications invoke exact control over output
timing, A software-generated output strobe, forinstance,
might have to be exactly 50 us wide. The DJNZ
operation caninsert a one instruction software delay into
a piece of code, adding a moderate time delay of two
instruction cycles periteration. Forexample, two instruc-
tions can add a 49-usec. software delay loop to code to
generate a pulse on the WR pin.

CLR WR

MOV R2, #24
DJNZ R2,$
SETB WR

The dollar sign in this example is a special character
meaning ‘the address of this instruction”. It can be used
to eliminate instruction labels on nearby source lines.

CHAPTER 5
Software Routines

Serial Port and Timer Mode Configuration

Configuring the 8051’s Serial Port for a given data rate
and protocol requires essentially three short sections of
software. On power-up or hardware reset the serial port
and timer control words must be initialized to the appro-
priate values. Additional software is also needed in the
transmit routine to load the serial port data registerand in
the receive routine to unload the data as it arrives.

To choose one arbitrary example, assume the 8051
should communicate with a standard CRT operating at
2400 baud (bits per second). Each character is transmit-
ted as seven data bits, odd parity, and one stop bit. The
resulting character rate is 2400 baud/9 bits, approxi-
mately 265 characters per second.

For the sake of clarity, the transmit and receive subrou-
tines here are driven by simple-minded software status

polling code rather than interrupts. The serial port must
be initialized to 8-bit UART mode (SM0, SM1 = 01),
enabled to receive all messages (SM2=0, REN=1). The
flag indicating that the transmit register is free for more
data will be artificially set in order to let the output
software know the output registeris available. Allthis can
be set up with the instruction at label SPINIT.

Timer 1 will be used in auto-reload mode as a baud rate
generator. To achieve a datarate of 2400 baud, the timer
must divide the 1 MHz internal clock by

1 x 108
(32) (2400)

which equals 13 (actually, 13.02) instruction cycles. The
timer must reload the value 13, or 0F3H, as shown by the
code at label TIINIT. (ASM51 will accept both the signed
decimal or hexadecimal representations.)

INITIALIZE SERIAL PORT
FOR 8-BIT UART MODE
& SET TRANSMIT READY FLAG.

0 e S

PINIT: MoV SCON, #01010010B
;
; INITIALIZE TIMER 1 FOR
H AUTO-RELOAD AT 32 X 2400 HZ
; (TO USED AS GATED 16-BIT COUNTER.)
;
TIINIT: MoV TCON, #11010010B
Mov TH1, #13
SETB TR1

;

;

Simple Serial 1/0 Drivers

SP_OUT is a simple subroutine to transmit the character
passed to it in the accumulator. First it must compute
the parity bit, insent it into the data byte, wait until the
transmitter is available, output the character, and then
return.

SP_IN is an equally simple routine which waits until a
characterisreceived, setsthe carry flagif there is an odd-
parity error, and returns the masked seven-bit code inthe
accumulator.

;MOVE PARITY BIT TO CARRY BIT

; INSERT INTO DATA BYTE
;WAIT FOR TRANSMITTER AVAILABLE

;OUTPUT THE CHARACTER

;SP_OUT ADD ODD PARITY TO ACC AND
: TRANSMIT WHEN SERIAL PORT READY
SP_OUT: MOV c,Pp

CPL c

MoV ACC.7,C

JNB TI,$

CLR TI

MOV SBUF, A

RET

5-12

CHAPTER 5
Software Routines

SP_IN: JNB RI, $
CLR RI
MOV A, SBUF
Mov c,P
CPL c
ANL A, #7FH
RET

;WAIT FOR A CHARACTER TO BE RECEIVED

;MOVE CHARACTER TO THE ACCUMULATOR

;SET CARRY BIT TO ONE IF ODD-PARITY ERROR
;MASK OUT PARITY BIT FROM CHARACTER

Transmitting Serial Port Character Strings

Any application which transmits characters through a
serial port to an ASCII output device will on occasion
need to output “canned” messages, including error

messages, diagnostics, or operator instructions. These
character strings are most easily defined with in-line data
bytes defined with the DB directive.

CR EQU ODH
LF EQU 0AH
ESC EQU 1BH
CALL XSTRING
DB CR,LF
DB ‘AMD QUALITY'
DB ESC
; (CONTINUATION OF PROGRAM)
XKSTRING: POP DPH
POP DPL
XSTR_1: CLR A
Move A,@A + DPTR
XSTR_2: JNB TI, $
CLR TI
MoV SBUF, A
INC DPTR
CLR a
Move A,@A + DPTR
CJINE A, #ESC, XSTR_2
MoV A, 41
JMp @A + DPTR

;ASCII CARRIAGE RET
;ASCII LINE-FEED
;ASCII ESCAPE CODE

;NEW LINES
; MESSAGE
;ESCAPE CHARACTER

;LOAD DPTR WITH FIRST CHARACTER

; (2ERO OFFSET)

;FETCH FIRST CHARACTER OF STRING
;WAIT UNTIL TRANSMITTER READY
;MARK AS NOT READY

;OUTPUT NEXT CHARACTER

;BUMP POINTER

;GET NEXT OUTPUT CHARACTER
;LOOP UNTIL ESCAPE READ

JRETURN TO CODE AFTER ESCAPE

Recognizing and Processing Special Cases

Before operating on the data it receives, a subroutine
might give “special handling” to certain input values.
Consider a word processing device which receives
ASCII characters through the 8051 serial port and drives
a thermal hard-copy printer. A standard routine trans-
lates most printing characters to bit patterns, but certain

control characters (, <CR>, <LF>, <BEL>,
<ESC>, or <SP>) must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the <NUL> value,
00H, and processed with the printing characters. The
CJUNE operation provides essentially a one-instruction
CASE statement.

;

CHAR EQU R7
iNTERP: CJINE CHAR, #7FH, INTP_1
; ;ET
INTP_1: CJINE CHAR, #07H, INTP_2
; ;ET [

; CHARACTER CODE VARIABLE

; SKIP UNLESS RUBOUT
(SPECIAL ROUTINE FOR RUBOUT CODE)

; SKIP UNLESS BELL
(SPECIAL ROUTINE FOR BELL CODE)

5-13

CHAPTER 5
Software Routines

INTP_2: CJINE CHAR, #0AH, INTP_3
RET

INTP_3: CJINE CHAR, #0DH, INTP_4
RET

INTP_4: CJINE CHAR, #1BH, INTP_5
RET

INTP_5: CJINE CHAR, #20H, INTP_6
RET

INTP_6: Jc PRINTC
MoV CHAR, #0

PRINTC:

; e
RET

;SKIP UNLESS LFEED

(SPECIAL ROUTINE FOR IFEED CODE)
;SKIP UNLESS RETURN
(SPECIAL ROUTINE FOR RETURN CODE

;SKIP UNLESS ESCAPE
(SPECIAL ROUTINE FOR ESCAPE CODE)
;SKIP UNLESS SPACE
(SPECIAL ROUTINE FOR SPACE CODE)
;JUMP IF CODE 20H

;REPLACE CONTROL CHARACTER WITH
;NULL CODE

;PROCESS STANDARD PRINTING
;CHARACTER

Buffering Serial Port Output Characters

Itis not always efficientto transmit characters through the
seral port one-at-a-time. Most applications generate a
short burst of characters all at once (English words or
multi-digit numbers, for instance), with the bursts them-
selves occurring at longer intervals. Instead of waiting
while the UART outputs each character, itwould be more
efficient if the background program could enter all the
characters into a first-in first-out (FIFO) data structure,

and continue about its business, letting an interrupt
routine transmit each character as the serial port be-
comes available.

Assume there is a 16-byte output data buffer starting at
70H. QHEAD and QTAIL keep track of the head and
tail portion of the buffer being used. The subroutine
ENTERQ waits until there is space in the queue, then
copies a character code from the accumulator to
the queue.

;LAST BYTE ENTERED INTO QUEUE
;LAST BYTE READ FROM QUEUE

= QTAIL.

;SAVE ACC DATA
;LOAD HEAD POINTER
; PRE-INCREMENT POINTER

;RELOAD ON OVERFLOW

;TEST IF QUEUE FULL

;LOOP UNTIL SPACE AVAILABLE
;STORE POINTER AND RELOAD ACC
;ENTER INTO QUEUE

;UPDATE HEAD POINTER

;ENABLE SERIAL PORT INTERRUPTS

QHEAD DATA 6EH
QTAIL DATA 6FH
BOTLIM EQU 70H
TOPLIM EQU TFH
; QUEUE IS EMPTY WHEN QHEAD = QTAIL AND
; FULL WHEN Q HEAD + 1 (WITHIN RANGE)
MOV QHEAD, #TOPLIM
MOV QTATIL, $TOPLIM
ENTERQ: MOV RO,A
MoV A, QHEAD
INC A
CINE A, #TOPLIM+1,ENTQ 1
MOV A, #BOTLIM
ENTQ 1: CJINE A, QTAIL,ENTQ 2
SIMP ENTQ 1
ENTQ 2: XCH A,RO
MOV @RO,A
MoV QHEAD, RO
SETB ES
RET

5-14

CHAPTER 5
Software Routines

The interrupt routine DQUEUE is invoked when the
transmitter is ready for another character. Firstit deter-
mines if any characters are available for transmission,
indicated by QHEAD and QTAIL being not equal. If more
datais available, itis writtento the transmit buffer (SBUF)

and the pointers are updated. If not, DQUEUE disables
serial port interrupts and returns to the background
program. ENTERQ will re-enable such interrupts as
more datais available. (This example does not consider
interrupt-driven serial input.)

ORG 0023H
PUSH AcC
PUSH PSW
MOV PSW, #300
DQUEUE: MOV A, QTAIL
CINE A, QHEAD,DQ 1
CLR ES
SJMP TI_RET
DQ 1: CLR TI
INC A
CJINE A, #TOPLIM+1,DQ 2
MOV A, #BOTLIM
DQ_2: MoV RO, A
MoV SBUF, @RO
MoV QTAIL,A
TI_RET: POP PSW
POP Acc
RETI

;SAVE CPU STATUS

;SELECT BANK 3

;TEST IF QUEUE EMPTY
;IF SO, CLEAR ENABLE BIT AND RETURN

;ELSE ACKNOWLEDGE REQUEST
;COMPUTE NEXT BYTE’'S ADDRESS

JREVISE ACC IF POINTER OVERFLOWED
;LOAD INDEX REGISTER

;RELOAD TRANSMITTER

;SAVE LAST POINTER USED.

;RESTORE STATUS AND RETURN

Synchronizing Timer Overflows

8051 timer overflows automatically generate an internal
interrupt request, which will vector program execution to
the appropriate interrupt service routine if interrupts are
enabled and no other service routines are in progress at
the time. However, it is not predictable exactly how long
it will take to reach the service routine. The service
routine call takes two instruction cycles, but 1, 2, or 4
additional cycles may be needed to complete the instruc-
tion in progress. If the background program ever dis-
ables interrupts, the response latency could further in-
crease by a few instruction cycles. (Critical sections
generally involve simple instruction sequences — rarely
multiplies or divides.) Interrupt response delay is gener-
ally negligible, but certain time-critical applications must
take the exact delay into account. For example, gener-
ating interrupts with timer 1 every millisecond (1000 in-

struction cycles) or so would normally call for reloading it
with the value, -1000 (OFC18H). But if the interrupt
interval (average over time) must be accurate to 1 instruc-
tion cycle, the 16-bit value reload into the timer must be
computed, taking into account when the timer actually
overflowed.

This simply requires reading the appropriate timer, which
has been incremented each cycle since the overflow
occurred. A sequence like the one below can stop the
timer, computer how much time should elapse before the
next interrupt, and reload and restart the timer. The
double-precision calculation shown here compensates
for any amount of timer overrun within the maximum
interval. Note that it also takes into account that the timer
is stopped for seven instruction cycles in the process. All
interrupts are disabled, so a higher priority request will not
be able to disrupt the time-critical code section.

CLR EA

CLR TR1

MOV A, #LOW(—1000+7)
ADD A,TL1

MOV TL1,A

MOV A, #HIGH (—1000+7)
ADDC A,TH1

MOV TH1,A

SETB TH1

;DISABLE ALL

INTERRUPTS

;STOP TIMER 1

;LOAD LOW-ORDER DESIRED COUNT
;CORRECT FOR TIMER OVERRUN
;RELOAD LOW-ORDER BYTE
;REPEAT FOR HIGH-ORDER BYTE

;RESTART TIMER

5-15

CHAPTER 5
Software Routines

Reading a Timer/Counter “On-the-Fly”

The preceding example simply stopped the timer before
changing its contents. This is normally done when
reloading a timer so that the time at which the timer is
started (i.e. the “run”flagis set) canbe exactly controlled.
There are situations, though, when it is desired to read
the current count without disrupting the timing process.
The 8051 timer/counter registers can all be read or
written while they are running, but a few precautions
must be taken.

Suppose the subroutine RDTIME should returnin <R1>
<R0> a 16-bit value indicating the count in timer 0. The
instant at which the counter was sampled is not as critical
as the fact that the value returned must have been valid
at some point while the routine was in progress. Thereis
apotential problem that between reading the two halves,
a low-order register overflow might increment the high-
order register, and the two data bytes returned would be
“outof phase”. The solution s to read the high-order byte
first, then the low-order byte, and then confirm that the
high-order byte has not changed. If it has, repeat the
whole process.

RDTIME: MOV A, THO
MOV RO, TLO
CJINE A, THO,RDTIME
MOV R1,A
RET

;SAMPLE TIMERO (HIGH)
;SAMPLE TIMERO (LOW)

;REPEAT IF NECESSARY

;STORE VALID READ

CHAPTER 6

8051 Family Boolean Processing Capabilities

Boolean Processor Operation
Boolean Processor Applications
Bit Permutation
Software Serial I/0
Combinatorial Logic Equations
Automotive Dashboard Functions

6-1

6-1

6-11
6-12
6-15
6-18
6-21

CHAPTER 6

’n

8051 Family Boolean Processing Capabilities

The 8051 incorporates a number of special features that
support the direct manipulation and testing of individual
bits and allow the use of single-bit variablesin performing
logical operations. Taken together, these features are
referred to as the 8051 Family Boolean Processor. While
the bit-processing capabilities alone would be adequate
to solve many control applications, their true power
comes when they are used in conjunction with the
microcomputer’s byte-processing and numerical capa-
bilities. The purpose of this discussionis to explainthese
concepts and show how they are used.

BOOLEAN PROCESSOR OPERATION

The Boolean Processing capabilities of the 8051 are
based on concepts that have been around for sometime.
Digital computer systems of widely varying designs all
have four functional elements in common (Figure 6-1):

¢ a central processor (CPU) with the control,
timing, and logic circuits needed to execute

stored instructions,

* a memory to store the sequence of instructions
making up a program or algorithm,

* data memory to store variables used by the
program, and

* some means of communicating with the outside

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a proces-
sor generally includes, at the minimum, operation
classes to perform arithmetic or logical functions on
program variables, to move variables from one place to
another, to cause program execution to jump or condi-
tionally branch based on register or variable states, and
to call and return from subroutines. The program and
data memory functions sometimes share a singie mem-
ory space, but this is not always the case. When the
address spaces are separated, program and data
memory need not even have the same basic word width.

Adigital computer’s flexibility comes in part fromits ability
to combine simple, fast operations to produce more
complex (albeit slower) ones, which in turn link together
to eventually solve the problem at hand. A 4-bit CPU
executing multiple precision subroutines can, for ex-
ample, perform 64-bit addition and subtraction. The
subroutines could in turn be building blocks for floating-
point multiplication and division routines. Eventually, the
4-bit CPU can simulate a far more complex “virtual”
machine.

Infact, any digital computer with the above fourfunctional
elements can (given time) complete any algorithm
(though the proverbial room full of chimpanzees at word

world.
TIMING &
CONTROL
PROGRAM
MEMORY |
b
ACCUMULATOR
& REGISTERS -
T
INPUT/ REAL
ouTPUT WORLD
PORTS —
—
ecag—
CENTRAL S
DATA
PROCESSING
MEMORY UNIT

Figure 6-1. Block Diagram for Abstract Digital Computer

6-1

CHAPTER 6
8051 Family Boolean Processing Capabilities

processors might first re-create Shakespeare’s classics
and this chapter)! This fact offers little consolation to
product designers who want programs to run as quickly
as possible. By definition, a real-time control algorithm
must proceed quickly enough to meet the preordained
speed constraints of other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given task is the number of
instructions it must execute. What makes a given com-
puter architecture particularly well- or poorly-suited for a
class of problems is how well its instruction set matches
the tasks to be performed. The better the “primitive”
operations correspond to the steps taken by the control
algorithm, the lower the number of instructions needed,
and the quicker the program will run. All else being equal,
a CPU supporting 64-bit arithmetic directly could clearly
perform floating-point math faster than a machine
bogged down by multiple-precision subroutines. In the
same way, direct support for bit manipulation naturally
leads to more efficient programs handling the binary
input and output conditions inherent in digital-control
problems.

Processing Elements

The following shows how the four basic elements of a
digital computer — a CPU with associated registers,
program memory, addressable data RAM, and I/O capa-
bilities — relate to Boolean variables.

CPU. The 8051 CPU incorporates special logic devoted
to executing several bit-wide operations. All told, there
are 17 suchinstructions, all listedin Table 6-1. Not shown
are 94 other (mostly byte-oriented) 8051 instructions.

Program Memory. Bit-processing instructions are
fetched from the same program memory as other arith-
metic and logical operations. In addition to the instruc-
tions of Table 6-1, several sophisticated program control
features, like multiple addressing modes, subroutine
nesting, and a two-level interrupt structure, are useful in
structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long,
depending on what function they perform. Those involv-
ing only the carry flag have either a single-byte opcode or
an opcode followed by a conditional-branch destination
byte (Figure 6-2). The more general instructions add a
“direct address” byte after the opcode to specify the bit
affected, yielding two or three byte encodings (Figure
6-2). Though this format allows potentially 256 directly
addressable bit locations, not all of them are imple-
mented in the 8051 Family.

Table 6-1. 8051 Family Boolean Processing Instruction

Subset
Mnemonic Description Byte Cyc
SETB C Set Carry flag 1 1
SETB bit Set direct bit 2 1
CLR C Clear Carry flag 1 1
CLR bit Clear direct bit 2 1
CPL C Complement Carry flag 1 1
CPL bit Complement direct bit 2 1
MOV C,bit Move direct bit to Carry flag 2 1
MOV bit,C Move Carry flag to direct bit 2 2
ANL C,bit AND direct bit to Carry flag 2 2
ANL C,bit AND complement of direct 2 2
bit to Carry flag
ORL Cpbit ORdirect bit to Carry flag 2 2
ORL C,bit OR complement of direct 2 2
bit to Carry flag
JCc rel Jump if Carry flag is set 2 2
JNC rel Jump if No Carry flag 2 2
JB bit,rel Jump if direct bit set 3 2
JNB bit,rel Jump if direct bit not set 3 2
JBC bit,rel Jump if direct bit is set & 3 2
Clear bit
Address mode abbreviations
C — Carry flag.
bit — 128 software flags, any /O pin, control or status bit.
rel — All conditional jumps include an 8-bit offset byte.

Range is +127 ~128 bytes relative to first byte of
the following instruction.

Data Memory. The instructions in Figure 6-2 can oper-
ate directly upon 144 general-purpose bits forming the
Boolean processor “RAM.” These bits can be used as
software flags or to store program variables. Two oper-
and instructions use the CPU's carry flag (“C") as a
special one-bit register; in a sense, the carry is a
“Boolean accumulator” for logical operations and data
transfers.

Input/Output. All 32 I/0O pins can be addressed as
individual inputs, outputs, or both, in any combination.
Any pincanbe a control strobe output, status (Test) input,
or serial I/0 link implemented via software. An additional
33individually addressable bits reconfigure, control, and
monitor the status of the CPU, and all on-chip peripheral
functions (timer counters, serial port modes, interrupt
logic, and so forth).

6-2

CHAPTER 6
8051 Family Boolean Processing Capabilities

! opcode

SETBC
CLRC
CPLLC
Il opcode | | disp!acemer\ti
JC rel
JNC rel

a. Carry Control and Test Instructions

\opcode} { bit address !

SETB bit
CLR bit
CPL bit
ANL C, bit
ANL C,/ bit
ORL C, bit
ORLC./ bit
MOV C, bit
MOV bit,C
[opcode } |[bit address] ’ displacement
J8 bit, rel
JNB bit, rel
JBC bit, rel

b. Bit Manipulation and Test Instructions

Figure 6-2. Bit Addressing Instruction Formats

Direct Bit Addressing

The most significant bit of the direct-address byte selects
one of two groups of bits. Values between 0 and 127
(00H and 7FH) define bits in a block of 16 bytes of on-
chip RAM, between RAM addresses 20H and 2FH
(Figure 6-3a). They are numbered consecutively from
the lowest-order byte’s lowest-order bit through the
highest-order byte’s highest-order bit.

Bit addresses between 128 and 255 (80H and 0FFH)
correspond to bits in a number of special registers,
mostly used for /O or peripheral control. These positions
are numbered with a different scheme than RAM; the five
high-order address bits match those of the register’s own

address, while the three low-order bits identify the bit
position within that register (Figure 6-3b).

Notice the column labeled “Symbol” in Figure 6-4. Bits
with special meanings in the PSW and other registers
have corresponding symbolic names. General-purpose
{as opposed to carry-specific) instructions may access
the carry like any other bit by using the mnemonic CY in
place of C. PO, P1, P2, and P3 are the 8051’s four /O
ports; secondary functions assigned to each of the eight
pins of P3 are shown in Figure 6-5.

Figure 6-6 shows the iast four bit-addressabie registers.
TCON (Timer Control) and SCON {Serial-Port Control)
control and monitor the corresponding peripherals, while
IE (Interrupt Enable) and IP (Interrupt Priority) enable
and prioritize the five hardware interrupt sources. Like
the reserved hardware register addresses, the five bits
not implemented in IE and IP should not be accessed;
they cannot be used as software flags.

Addressable Register Set. There are 20 special-func-
tion registers in the 8051, but the advantages of bit
addressing only relate to the 11 described below. Five
potentially bit-addressable register addresses (0COH,
0C8H, 0D8H, OE8H, & OF8H) are reserved for expansion
in microcomputers based on the 8051 Family architec-
ture. Reading orwriting non-existent registersinthe 8051
series is pointless, and may cause unpredictable resuits.
Byte-wide logic operations can be used to manipulate
bits in all non-bit-addressable registers and RAM.

The accumulator and B registers (A and B) are normally
involved in byte-wide arithmetic, but their individual bits
can also be used as 16 general software flags. Added
with the 128 flags in RAM, this gives 144 general purpose
variables for bit-intensive programs. The program status
word (PSW) in Figure 6-4 is a collection of flags and
machine status bits including the carry flag itself. Byte
operations acting on the PSW can, therefore, affect the
carry.

Instruction Set

Having looked at the bit variables available to the
Boolean Processor, we will now look at the four classes
of instructions that manipulate these bits. it may be
helpful to refer back to Table 6-1 while reading this
section.

State Control. Addressable bits or flags may be set,
cleared, or logically complemented in one instruction
cycle with the two-byte instructions SETB, CLR, and
CPL. The “B” affixed to SETB distinguishes it from the
assembler “SET” directive used for symbol definition.
SETB and CLR are analogous to loading a bit with a
constant, 1 or 0. Single byte versions perform the same
three operations on the carry.

6-3

CHAPTER 6
8051 Family Boolean Processing Capabilities

Direct Bit Addresses Hardware
RAM Byte Register
Byte (MSB) (Ls8) Address (MSB) (LSB) Symbol
/{/ OFFH
7FH 7\ ~_
[~ OFOH F7 F6 F5 F4 F3 F2 F1 FO B
2FH TF 7€ 70 | 7C 78 7A 79 78
2EH 77 76 75 74 73 72 7 70 O0EOH E7 E6 ES E4 E3 E2 E1 EO ACC
2DH 6F 6E 6D | 6C 6B 6A 69 68
2CH 67 66 65 64 63 62 61 60 0DOH D7 | D6 | DS | D4 D3 | D2 | D1 o]1] PSW
2BH SF | SE | SD |SC |[SB |S5A 59 |58
2AH 57 56 S5 54 53 52 51 50 0B8H — —_ - BC | BB | BA | B9 B8 P
29H 4aF 4E 40 4ac 48 4A 49 48
28H 47 46 45 44 43 42 41 40 0BOH 87 B6 BS B4 B3 B2 B1 - 1) P3
27TH 3F 3E 30 3C 38 3A 39 38
26H 37 36 35 34 33 32 31 30 0ABH AF - - AC | AB | AA A9 A8 IE
25H 2F 2E 20 2C 28 2A 29 28
24H 27 26 25 24 23 22 21 20 O0AOH A7 A6 AS A4 A3 A2 Al A0 P2
23H 1F 1E 1D 1C) 1A 19 18
22H 17 16 15 14 13 12 1 10 98H 9F 9E 9D 9C 9B 9A 99 98 SCON
21H OF OE 0D |oC []:] 0A 09 08
20H 07 06 05 04 03 02 01 00 90H 97 96 95 94 93 92 91 90 P1
1FH
18H Bank 3
17H
. 88H 8F 8E 8D | 8C 8B 8A 89 88 TCON
Bank 2
10H
OFH
08H Bank 1
7H
0 80H 87 86 85 84 83 82 81 80 PO
00 Bank 0
a. Ram Bit Addresses b. Special Function Register Bit Addresses

Figure 6-3. Bit Address Maps

6-4

CHAPTER 6
8051 Family Boolean Processing Capabilities

(MSB) (LSB) ov PSW.2 Overfiow flag.
cy Il AC E Fo [RS1 l RSO [ov I _ I P | iet/clgared .by.hardwgre dur-
g arithmetic instructions to
Symbol Position Name and Significance indicate overflow conditions.
cY PSW.7 Carry flag. — PSW.1 (reserved)
Set/cleared by hardware or p PSW.0 Parity flag.
software during certain arith- Set/cleared by hardware each
metic and logical instructions. instruction cycle to indicate an
AC PSW.6 Auxiliary Carry flag. odd/even number of ‘‘one”
Set/cieared by hardware dur- bits in the accumulator, i.e.,
ing addition or subtraction in- even parity.
structions to indicate carry or Note- the contents of (RS1, RSO)
borrow out of bit 3. enable the working register
FO PSW.5 FlagO0. banks as follows:
Set/cleared/tested by soft- (0,0) -Bank 0 (OOH-07H)
ware as a user-defined status (0,1)-Bank 1 (08H-0FH)
flag. (1,0)-Bank2 (10H-17H)
RS1 PSW.4 Register bank Select control (1.1)-Bank3 (18H-1FH)

bits.

RSO PSW.3 1 & 0. Set/cleared by software
to determine working register
bank (see Note).

Figure 6-4. PSW — Program Status Word Organization

' (MSB) (LSB) INT1 P3.3 Interrupt 1 input pin. '
'ro | wR | T1]| 70| NT1[INTO] TXD | RXD | Lowlevel or faling-edge trig-
Symbol Position Name and Significance INTO P3.2 Ignet:n':pt 0 input pin.
RD P3.7 Read data control output. Low-level or falling-edge trig-
Active low pulse generated by gered.
hardware when external data TXD P31 Transmit Data pin for serial

memory is read. port in UART mode. Clock out-

WR P3.6 Write data control output. put in shift register mode.
Active low pulse generated by
hardware when external data
memory is written.

RXD P3.0 Receive Data pin for serial
port in UART mode. Data I/0
pin in shift register mode.

T1 P3.5 Timer/counter 1 external input
or test pir.

TO P3.4 Timer/counter 0 external input
or test pin.

Figure 6-5. P3 — Alternate /O Functions of Port 3

6-5

CHAPTER 6
8051 Family Boolean Processing Capabilities

(MSB) (LSB)
| TF1| TR1 | TF0 | TRO | 1E1 [171 1EQ [ITO |

Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag.

Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

TR1 TCON.6 Timer 1 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

TFO TCON.5 Timer 0 overflow Flag.

Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

TRO TCON.4 Timer 0 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

IE1

Im

IEO

ITO

TCON.3

TCON.2

TCON.1

TCON

.0

Interrupt 1 Edge flag.

Set by hardware when exter-
nal interrupt edge detected.
Cleared when interrupt pro-
cessed.

Interrupt 1 Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interrupts.
Interrupt O Edge flag.

Set by hardware when exter-
nal interrupt edge detected.
Cleared when interrupt pro-
cessed.

Interrupt O Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interrupts.

a. TCON—Timer/Counter Control/Status Register

(MSB) (LSB)
| sMo | sm1| sm2 | REN | TB8 | RB8 | TI | RI |
Symbol Position Name and Significance

SMO SCON.7 Serial port Mode control bit O.
Set/cleared by software (see

note).

SM1 SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see
note).

SM2 SCON.5 Serial port Mode control bit 2.
Set by software to disable re-
ception of frames for which bit
8 is zero.

REN SCON.4 Receiver Enable control bit.
Set/cleared by software to en-
able/disable serial data recep-
tion.

TB8 SCON.3 Transmit Bit 8.

Set/cleared by hardware to de-
termine state of ninth data bit
transmitted in 9-bit UART
mode.

b. SCON—Serial Port Control/Status Register

Figure 6-6. Peripheral Configuration Registers

RB8

Tl

3

SCON.

SCON.

Note-

2

1

Receive Bit 8.

Set/cleared by hardware to in-
dicate state of ninth data bit
received.

Transmit Interrupt flag.

Set by hardware when byte

transmitted. Cleared by soft-

ware after servicing.

Receive Interrupt flag.

Set by hardware when byte re-

ceived. Cleared by software

after servicing.

the state of (SMO, SM1)

selects:

(0,0)—Shift register 1/0
expansion.

(0,1)—8-bit UART, variable
data rate.

(1,0)—9-bit UART, fixed data
rate.

(1,1)—9-bit UART, variable
data rate.

6-6

CHAPTER 6

8051 Family Boolean Processing Capabilities

(MSB) (LSB)
lea| —[—]es|er1]exi]|er1|Eexo]
Symbol Position Name and Significance EX1 IE.2
EA IE.7 Enable All control bit.

Cleared by software to disable
all interrupts, independent of

the state of IE.4-1E.O. ETO IE.A
—_ IE.6 (reserved)
— IE.5
ES IE.4 Enable Serial port control bit. EX0 IE.0

Set/cleared by software to en-
able/disable interrupts from Tl
or Rl flags.

ET1 IE.3 Enable Timer 1 control bit.
Set/cleared by software to en-
able/disable interrupts from
timer/counter 1.

c. |IE—Interrupt Enable Register

(MSB) (LSB)
=] —=1—=]ps]pr1]px1]pr0]Pxo]
Symbol Position Name and Significance PX1 iP.2
— IP.7 (reserved)
— IP.6 (reserved)
— IP.5 (reserved)
PS IP.4 Serial port Priority control bit. PTO IP.1

Set/cleared by software to
specify high/low priority inter-
rupts for Serial port.
PT1 IP.3 Timer 1 Priority control bit. PX0 IP.O
Set/cleared by software to
specify high/low priority inter-
rupts for timer/counter 1.

d. IP—interrupt Priority Contol Register

Enable External interrupt 1
control bit. Set/cleared by
software to enable/disable in-
terrupts from INT1.

Enable Timer 0 control bit.
Set/cleared by software to en-
able/disable interrupts from
timer/counter 0.

Enable External interrupt O
control bit. Set/cleared by
software to enable/disable in-
terrupts from INTO.

External interrupt 1 Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INT1.
Timer O Priority control bit.
Set/cleared by software to
specify high/low priority inter-
rupts for timer/counter 0.
External interrupt 0O Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INTO.

Figure 6-6. Peripheral Configuration Registers (continued)

CHAPTER 6
8051 Family Boolean Processing Capabilities

ASM51 specifies a bit address in any of three ways:

* by the number or expression corresponding to
the direct bit address (0-255);

* by the name or address of the register containing
the bit, the dot operator symbol (a period: “.”),

and the bit’s position in the register (7-0);
* in the case of control and status register, by the

predefined assembler symbols listed in the first
columns of Figures 6-4 through 6-6.

Bits may also be given user-defined names with the
assembler “BIT” directive and any of the above tech-
niques. For example, bit 5 of the PSW may be cleared by

any of the four instructions.
USR_FLGBIT PSW.5 ; User Symbol Definition

CLR 0DSH ; Absolute Addressing

CLR PSW.5 ; Use of Dot Operator

CLR FO ; Pre-Defined Assembler Symbol
CLR USR_FLG ;User-Defined Symbol

Data Transfers. The two-byte MOV instructions can
transport any addressable bit to the carry in one cycle, or
copy the carry to the bitin two cycles. A bit can be moved
between two arbitrary locations via a carry by combining
the two instructions. (If necessary, one may push and
pop the PSW to preserve the previous contents of the
carry.) These instructions can replace the multi-instruc-
tion sequence of Figure 6-7, which shows a program
structure appearing in controller applications whenever
flags or outputs are conditionally switched on or off.

Logical Operations. Four instructions perform th
logical-AND and logical-OR operations between the
carry and another bit, and leave the results in the carry.
The instruction mnemonics are ANL and ORL; the ab-
sence or presence of a slash mark (“/”) before the source
operand indicates whether to use the positive-logic value
or the logical complement of the addressed bit. (The
source operand itself is never affected.)

Bit-test Instructions. The conditional jump instructions
“JC rel” (Jump on Carry) and “JNC rel” (Jump on Not
Carry) test the state of the carry flag, branchingiif itis a
one or zero, respectively. The letters “rel” denote relative
code addressing. The 3-byte instructions “JB bit, rel” and
“JNB bit, rel” (Jump on Bit and Jump on Not Bit) test the
state of any addressable bit in a similar manner. A fifth
instruction combines the Jump on Bit and Clear opera-
tions. "JBC bit, rel” conditionally branches to the indi-
cated address, then clears the bit in the same 2-cycle
instruction. This operationis the same as the 8048-family
“JTF” instructions.

All 8051 conditional jump instructions use program
counter-relative addressing, and all execute in two
cycles. The last instruction byte encodes a signed dis-
placement ranging from—128 to +127. During execution,
the CPU adds this value to the incremented program
counter to produce the jump destination. Put another
way, a conditional jump to the immediately following
instruction would encode 00H in the offset byte.

A section of program or subroutine written using only
relative jumps to nearby addresses will have the same
machine code independent of the code’s location. An
assembled routine may be repositioned anywhere in
memory, even crossing memory page boundaries, with-
out having to modify the program or recompute destina-
tion addresses. To facilitate this flexibility, there is an
unconditional “Short Jump” (SJMP) which uses relative
addressing as well. Since a programmer would have
quite a chore trying to compute relative offset values from
one instruction to another, ASM51 automatically com-
putes the displacement needed, giving only the destina-
tion address or label. An error message will alert the
programmer if the destination is “out of range.”

The so-called “Bit Test” instructions implemented on
many other microprocessors simply perform the logic-
AND operation between a byte variable and a constant
mask, and set orclear a zeroflagdepending onthe result.

ISOLATE
SOURCE
BIT
YES 3 NO

BIT = 1?

SET CLEAR
DESTINATION DESTINATION

B8IT BIT

Figure 6-7. Bit Transfer Instruction Operation

6-8

CHAPTER 6
8051 Family Boolean Processing Capabilities

This is essentially equivalent to the 8051 “MOV C bit”
instruction. A second instructionis then needed to condi-
tionally branch based on the state of the zero flag. This
does not constitute abstract bit-addressing in the 8051
Family sense. Aflag exists only as afield withinaregister;
to reference a bit the programmer must know and specify
both the encompassing register and the bit's position
therein. This constraint severely limits the flexibility of
symbolic bit addressing and reduces the machine’s
code-efficiency and speed.

Interaction with Other Instructions. The carry flag is
also affected by the instructions listed in Table 6-2. It can
be rotated through the accumulator, and altered as a side
effect of arithmetic instructions. Refer to the User’s
Manual for details on how these instructions operate.

Simple Instruction Combinations

By combining general purpose bit operations with certain
addressable bits, one can “custom build” several
hundred usefulinstructions. All eight bits of the PSW can
be tested directly with conditional jump instructions to
monitor (among other things) parity and overflow status.
Programmers can take advantage of 128 software flags
to keep track of operating modes, resource usage, and
so forth.

The Boolean instructions are also the most efficient way
to control or reconfigure peripheral and /O registers. All
32 1/0 lines become “test pins,” for example, tested by
conditional jump instructions. Any output pin can be
toggled (complemented) in a single instruction cycle.
Setting or clearing the Timer Run flags (TR0 and TR1)
turn the timer-counters on or off; polling the same flags
elsewhere lets the program determine if a timer is run-
ning. The respective overflow flag (TF0 and TF1) can be
tested to determine when the desired period or count
has elapsed, then cleared in preparation for the next
repetition. These bits are all part of the TCON register,
Figure 6-6a. Thanks to symbolic bit addressing, the pro-
grammer only needs to remember the mnemonic asso-
ciated with each function, and does not need to memo-
rize control word layouts.

Inthe 8048-family, instructions corresponding to some of
the above functions require specific opcodes. Ten differ-
ent opcodes serve to clear and complement the software
flags FO and F1, enable and disable each interrupt, and
start/stop the timer. In the 8051 instruction set, just three
opcodes (SETB, CLR, CPL) with a direct bit address
appended perform the same functions. Two test instruc-
tions (JB and JNB) can be combined with bit addresses
to test the 8048 software flags, the I/0 pins, T0, T1, and
INT, and the eight accumulator bits, replacing 15 more
different instructions.

Table 6-2. Other Instructions Affecting the Carry Flag

Mnemonic Description Byte Cyc
ADD ARn Add register to 1 1
Accumulator
ADD A.direct Add direct byte to 2 1
Accumulator
ADD A, @Ri Add indirect RAM to 1 1

Accumulator

Add immediate data 2 1
to Accumulator

Add register to 1 1
Accumulator with

Carry flag

Add direct byte to 2 1
Accumulator with

Carry flag

Add indirect RAM to 1 1
Accumulator with

Carry flag

Add immediate data 2 1
to Acc with Carry flag

Subtract register from 1 1
Accumulator with

borrow

Subtract direct byte 2 1
from Acc with borrow

Subtract indirect RAM 1 1
from Acc with borrow

Subtract immediate 2 1
data from Acc with

borrow

Multiply A & B 1 4
Divide Aby B 1 4
Decimal Adjust 1 1
Accumulator

ADD A, #data

ADDC A,Rn

ADDC A, direct

ADDC A,@Ri

ADDC A, #data

SuBB A,Rn

SUBB A, direct
SUBB A,@Ri

SUBB A, #data

MUL AB
DIv AB
DA A

RLC A Rotate Accumulator 1 1
Left through the Carry

flag

Rotate Accumulator 1 1
Right through Carry

flag

RRC A

CINE A,direct,rel Compare direct byte 3 2
to Acc & Jump if Not

Equal

Compare immediate 3 2
to Acc & Jump if Not

Equal

Compare immed to 3 2
register & Jump if Not

Equal

Compare immed to 3 2
indirect & Jump if Not

Equal

CINE A, #data,rel

CINE Rn,#data,rel

CINE @Ri,#data,rel

6-9

CHAPTER 6
8051 Family Boolean Processing Capabilities

Table 6-3a shows how 8051 programs implement soft- Family solution requires the same number of machine
ware flag and machine control functions associated with cycles, and executes 2.5 times faster.
special opcodes in the 8048. In every case the 8051

Table 6-3a. Contrasting 8048 and 8051 Bit Control and Testing Instructions

8048 8051
Instruction Bytes Cycles Hs Instruction Bytes Cycles & us

Flag Control

CLR C 1 1 25 CLR C 1 1

CPL FO 1 1 2.5 CPL FO 2 1
Flag Testing

JNC offset 2 2 5.0 JNC rel 2 2

JFO offset 2 2 5.0 JB Fo,rel 3 2

JB7 offset 2 2 5.0 JB ACC.7,rel 3 2
Peripheral Polling

JT0 offset 2 2 5.0 JB TO,rel 3 2

JN1 offset 2 2 5.0 JNB INTO,rel 3 2

JTF offset 2 2 5.0 JBC TFO,rel 3 2
Machine and Peripheral Control

STRT T 1 1 2.5 SETB TRO 2 1

EN 1 1 1 25 SETB EXO 2 1

DIS TCNT1 1 1 2.5 CLR ETO 2 1

Table 6-3b. Replacing 8048 Instruction Sequences with Single 8051 Instructions

8048 8051

Instruction Bytes Cycles us Instruction Bytes Cycles & s
Flag Control
Set carry
CLR C
CPL C = 2 2 50 | SETE C 1 1
Qat Snftware Flan
uvccﬁugo lag
CPL _ FO = 2 2 50 | SETB FO 2 1
Turn Off Output Pin
ANL P1, #OFBH = 2 2 5.0 CLR P1.2 2 1
Complement Output Pin
IN A,P1
XRL A, #04H
OuUTL Pt1A = 4 6 16.0 | CPL P1.2 2 1
Clear Flag in RAM
MOV RO, # FLGADR
MOV A,@RO
ANL A, #FLGMASK
MOV @RO0,A = 6 6 15.0 | CLR USER__FLG 2 1

6-10

CHAPTER 6
8051 Family Boolean Processing Capabilities

Table 6-3b. Replacing 8048 Instruction Sequences with Single 8051 Instructions (continued)

8048

Instruction Bytes

Cycles us

8051

Instruction Bytes

Cycles & us

Flag Testing:
Jump if Software Flagis 0
JFO $+4
JMP offset = 4 4

Jump if Accumulator bitis O
CPL A
JB7 offset
CPL A = 4 4

10.0

10.0

JNB FO,rel 3 2

JNB ACC.7 rel 3 2

Peripheral Polling
Test if Input Pin is Grounded
IN A.P1
CPL A
JB3 offset = 4 5

Test if Interrupt Pin is High
JN1 $+4
JMP offset = 4 4

12.5

10.0

JNB P1.3,rel 3 2

JB INTO,rel 3 2

BOOLEAN PROCESSOR APPLICATIONS
So what does all this buy you?

Qualitatively, nothing. All the same capabilities could be
(and often have been) implemented on other machines
using awkward sequences of other basic operations. As
mentioned earlier, any CPU can solve any problemgiven
enough time.

Quantitatively, the differences between a solution pro-
vided by the 8051 and those required by previous archi-
tectures are numerous. The 8051 Family solution is a
faster, cleaner, lower-cost soiution to microcontroller
applications.

The opcode space freed by condensing many specific
8048 instructions in a few general operations has been
used to add new functionality to the 8051 family architec-
ture — both for byte and bit operations. 144 software
flags replace the 8048’s two. These flags (and the carry)
may be directly set, not just cleared and complemented,
and all can be tested for either state, not just one.
Operating mode bits previously inaccessible may be
read, tested, or saved. Situations where the 8051 instruc-
tion set provides new capabilities are contrasted with
8048 instruction sequences in Table 6-3b. Here the 8051
speed advantage ranges from 5x to 15x!

Combining Boolean and byte-wide instructions can pro-
duce great synergy. An 8051 Family based application
will prove to be:

¢ simpler to write since the architecture correlates
more closely with the problems being solved;

easier to debug because more individual instruc-
tions have no unexpected or undesirable side-

effects;

more byte efficient due to direct bit addressing
and program counter relative branching;

faster running because fewer bytes of instructions
need to be fetched and fewer conditional jumps
are processed;

lower cost because of the high level of system-
integration within one component.

These rather unabashed claims of excellence shall not
go unsubstantiated. The rest of this chapter examines
less trivial tasks simplified by the Boolean processor. The
first three compare the 8051 with other microprocessors;
the last two go into 8051-based system designs in much
greater depth.

CHAPTER 6
8051 Family Boolean Processing Capabilities

Design Example #1 — Bit Permutation

First, we’ll use the bit-transfer instructions to permute a
lengthy pattern of bits.

A steadily increasing number of data communication
products use encoding methods to protect the security of
sensitive information. By law, interstate financial transac-
tions involving federal banking system must be transmit-
ted using the Federal Information Processing Data En-
cryption Standard (DES).

Basically, the DES combines eight bytes of “plaintext”
data (in binary ASCII, or any other format) with a 56-bit
“key”, producing a 64-bit encrypted value for transmis-
sion. At the receiving end the same algorithm is applied
tothe incoming data using the same key, reproducing the
original eight byte message. The algorithm used for
these permutations is fixed; different user-defined keys
ensure data privacy.

It is not the purpose here to describe the DES in any
detail. Suffice it to say that encryption/decryption is a
long, iterative process consisting of rotations, exclusive-
OR operations, function table look-ups, and an extensive
sequence of bit permutation, packing, and unpacking
steps. The bit manipulation steps are included, it is
rumored, to impede a general purpose digital supercom-
puter trying to “break” the code. Any algorithm imple-
menting the DES with previous generation microproces-
sors would spend virtually all of its time diddling bits.

The bit manipulation performed is typified by the Key
Schedule Calculation represented in Figure 6-8. This
step is repeated 16 times for each key used in the
course of a transmission. In essence, a 7-byte, 56-bit

“Shift Key Buffer” is transformed into an 8-byte, “Permu-

tation Buffer" without altering the shifted key. The arrows
in Figure 6-8 indicate a few of the translation steps. Only
six bits of each byte of the Permutation Buffer are used;

the two high-order bits of each byte are cleared. This
means only 48 of the 56 Shifted Key Buffer bits are used
in any one iteration.

Different microprocessor architectures would bestimple-
ment this type of permutation in different ways. Most
approaches would share the steps of Figure 6-9a:

¢ |nitialize the Permutation Buffer to default state
(ones or zeroes);

¢ Isolate the state of a bit of a byte from the Key
Buffer. Depending on the CPU, this might be
accomplished by rotating a word of the Key
Buffer through a carry flag or testing a bit in
memory or an accumulator against a mask byte;

* Perform a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is

correct;

¢ Otherwise reverse the corresponding bit in the
permutation buffer with logical operations and

mask bytes.

Each step above may require several instructions. The
last three steps must be repeated for all 48 bits. Most
microprocessors would spend 300 to 3,000 us on each of
the 16 iterations.

Notice, though, that this flow chart looks a lot like Figure
6-7. The Boolean Processor can permute bits by simply
moving them from the source to the carry to the
destination — a total of two instructions taking 4 bytes
and 3 us per bit. Assume the Shifted Key Buffer and Per-
mutation Buffer both reside in bit-addressable RAM, with
the bits of the former assigned symbolic names SKB_1,
SKB_2 ... SKB_56. Then working from Figure 6-8, the
software for the permutation algorithm would be that
of Example 6-1a. The total routine length would be
192 bytes, requiring 144 pus.

Permuted and Shifted 56-Bit Key Buffer

G

D;

——_ e ——.n " mp—

[23 a 567 s]orn 1a1s s [17 2 uf2s 2 2 23334 3 940 | B 44 46 4849 50 5152 53 54 55 56]
L ! L/ s
&) <

N\
p / p
. |
[xxunnuts][xx:nuezvm] (v] [C 2] [5] [] [uwmssusy] [xxas4250 % 2 32
PERMUTATION BYTE 1 PERM BYTE 2 PERMBYTE3 PERMBYTE4 BYTES BYTES PERM BYTE7 PERM BYTE 8
48-Bit Key K,

Figure 6-8. DES Key Schedule Transformation

CHAPTER 6
8051 Family Boolean Processing Capabilities

N

CLEAR ALL BITS
OF PERMUTATION
BUFFER

L.____?.,______

{

ISOLATE
SKB BIT (1)

\

REPEAT
FOR EACH
BIT OF
SHIFTED

\
\ xey

SEYT PERMUITATION
BUFFER 8IT
PC2y

|
|
l

BUFFER

(LEAVE PERMUTATION (48 TIMES)

BUFFER BIT
CLEARED)

Figure 6-9a. Flowchart for Key Permutation Attempted with a Byte Processor

The algorithm of Figure 6-9b is just slightly more efficient
in this time-critical application and illustrates the syn-
ergy of an integrated byte and bit processor. The bits
needed for each byte of the Permutation Buffer are
assimilated by loading each bit into the carry (1 ps.) and
shifting itinto the accumulator (1 pus.). Each byte is stored
in RAM when completed. Forty-eight bits thus need a
total of 112 instructions, some of which are listed in

Example 6-1b. Worst-case execution time would be 112
us, since each instruction takes a single cycle. Routine
length should also decrease, to 168 bytes. Actually, inthe
context of the complete encryption algorithm, each per-
muted byte would be processed as soon as it is assimi-
lated — saving memory and cutting execution time by
another 8 us.

CHAPTER 6
8051 Family Boolean Processing Capabilities

+

CLEAR ACCUMULATOR

LOAD BIT MAPPED ONTO BIT 5 OF
PERMUTATION BYTE INTO CARRY

ROTATE LEFT INTO ACC.

Y

LOAD BIT MAPPED ONTO BIT 4
OF PERMUTATION BYTE INTO CARRY

Y REPEAT
ROTATE LEFT INTO ACC. > FOR EACH

BYTE OF
PERMUTATION
BUFFER
(8 TIMES)

i

LOAD BIT MAPPED ONTO BIT 0
OF PERMUTATION BYTE INTO CARRY

ROTATE LEFT INTO ACC

STORE ACC. INTO PERMUTATION
BUFFER

Figure 6-9b. DES Key Permutation with Boolean Processor

6-14

CHAPTER 6
8051 Family Boolean Processing Capabilities

Example 6-1. DES Key Permutation Software

a. “Brute Force” technique

MOV
MOV
MoV
Mov
MOV
MOV
MoV
MOV

MoV
MOV
MoV
MoV

b. Using Accumulator to Collect Bits

CLR
MoV
RLC
MoV
RLC
MOV
RLC
MOV
RLC
MoV
RLC
MoV
RLC
MoV

MOV
RLC
MoV
RLC
MOV

C,SKB_1
PB_1.1,C
C,SKB_2
PB_4.0,C
C,SKB_3
PB 25,C
C.SKB_4
PB_1.0,C

PB_5.0,C
C,SKB_56
PB_7.2,C

A
C,SKB_14
A
C.SKB_17
A
C.SKB_11
A
C.SKB_24
A
C,SKB_1
A
C,SKB_5

C,SKB_29
A
C,SKB_32
A

PB_8,A

Todate, most banking terminals and other systems using
the DES have needed special boards or peripheral
controller chips just for the encryption decryption proc-
ess, and still more hardware to form a serial bit stream
for transmission (Figure 6-10a). An 8051 solution
could pack most of the entire system onto the one chip
(Figure 6-10b). The whole DES algorithm would require
less than one-fourth of the on-chip program memory, with
the remaining bytes free for operating the banking termi-
nal (or whatever) itself.

Moreover, since transmission and reception of data is
performed through the on-board UART, the unencrypted
data (plaintext) never even exists outside the microcom-
puter! Naturally, this would afford a high degree of
security from data interception.

Design Example #2 — Software Serial 1/0

An example often imposed on beginning microcomputer
students is to write a program simulating a UART.
Though doing this with the 8051 Family may appearto be
a moot point (given that the hardware for a full UART is
on-chip), it is still instructive to see how it would be done,
and maintains a product-line tradition.

As it turns out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using the
Booleaninstruction set. Since any I/O pin may be a serial
input or output, several serial links could be maintained
atonce.

Figure 6-11a and 11b, show algorithms for receiving or
transmitting a byte of data. (Another section of program
would invoke this algorithm eight times, synchronizing it
with a start bit, clock signal, software delay, or timer
interrupt.) Data is received by testing aninput pin, setting
the carry to the same state, shifting the carry into a data
buffer, and saving the partial frame ininternal RAM. Data
is transmitted by shifting an output buffer through the
carry, and generating each bit on an output pin.

A side-by-side comparison of the software for this com-
mon application with three different microprocessor
architecturesis shown in Table 6-4a and 6-4b. The 8051
solution is more efficient than the others on every count!

6-15

CHAPTER 6
8051 Family Boolean Processing Capabilities

DISPLAY

KEYBOARD

B
|
)

(—

e T

CONTROL AND ADDRESS BUSSES

LT

ULl

o
PORTS CpPU

RAM

ROM

DATA
ENCRY
PTION
UNIT

UART

10 30 11

L3010

SYSTEM DATA BUS

a. Using Multi-Chip Processor Technology

DISPLAY

(——

KEYBOARD

(——

P2

PO

P1

8051

TxD

b. Using One Single-Chip Microcomputer

Figure 6-10. Secure Banking Terminal Block Diagram

TO0
‘ MODEM

]

6-16

CHAPTER 6
8051 Family Boolean Processing Capabilities

C INPUT)

7

SET CARRY CLEAR CARRY

T -

I

LOAD BUFFER

{

ROTATE THRU C

|

STORE BUFFER

a. Reception

C OUT]PUT)

LOAD BUFFER

l

ROTATE THRU C

]

STORE BUFFER

CARRY = 0 CARRY = 1

|

CLEAR OUTPUT SET QUTPUT

[]

b. Transmission

Figure 6-11. Serial /O Algorithms

6-17

CHAPTER 6
8051 Family Boolean Processing Capabilities

Table 6-4. Serial /0 Programs for Various Microprocessors

a.) Input Routine

8085 8048 8051
IN SERPORT MOV C, SERPIN
ANI MASK CLR C
Jz O JINTO j¥e}
CcMC CPL (o]
LO: LXI HL, SERBUF Mov RO, #SERBUF
MoV A,M MoV A, GRO MoV A, SERBUF
RR RRC A RRC A
MoV M,A MOV @RO,A MOV SERBUF, A
RESULTS:
8 Instructions 7 Instructions 4 Instructions
14 Bytes 9 Bytes 7 Bytes
56 States 9 Cycles 4 Cycles
19 us 22.5 us 4 us
b.) Ouput Routine
8085 8048 8051
LXI HL, SERBUF MoV RO, #SERBUF
MOV AM Mov A, @RO MoV A, SERBUF
RR RRC A RRC A
MoV M,A MOV @RO,A Mov SERBUF, A
IN SERPORT
Jc HI Jc HI
LO: ANI NOT MASK ANL SERPRT, #NOT MASK Mov SERPIN, C
JMP CNT JMP CNT
HI: ORI MASK HI: ORL SERPRT, #MASK
CNT: ouT SERPORT CNT:
RESULTS:
10 Instructions 8 Instructions 4 Instructions
20 Bytes 13 Bytes 7 Bytes
72 States 11 Cycles 5 Cycles
24 us 27.5 us 5 us

Design Example #3 — Combinatorial Logic
Equations

Some simple uses for bit-test instructions and logical
operations follow.

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hardware
involved may vary fromrelay logic, vacuumtubes, or TTL
orto more esoteric technologies like fluidics, in each case
the goal is the same: to solve a problem represented by
a logical function of several Boolean variables.

Figure 6-12 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation

Q=(U-(V+W)+(X-Y)+Z

Equations of this sort might be reduced using Karnaugh
Maps or algebraic techniques, but that is not the purpose
of this example. As the logic complexity increases, so
does the difficulty of the reduction process. Even a minor
change to the function equations as the design evolves
would require tedious re-reduction from scratch.

For the sake of comparison, this function is implemented
three ways, restricting the software to three proper
subsets of the 8051 Family instruction set. It is also
assumed that U and V are input pins from different input
ports, W and X are status bits for two peripheral control-
lers, and Y and Z are software flags set up earlier in the
program. The end result must be written to an output pin
on some third port. The first two implementations follow
the flow-chart shown in Figure 6-13. Program flow would
embark on a routine down a test-and-branch tree and
leaves either the “True” or “Not True” exit as soon as the
proper result has been determined. These exits then
rewrite the output port with the result bit respectively one
or zero.

Other digital computers must solve equations of this type
with standard word-wide logical instructions and condi-
tional jumps. So for the firstimplementation, no general-
ized bit-addressing instructions are used. As we shall
soon see, being constrained to such an instruction sub-
set produces somewhat sloppy software solutions. 8051
Family mnemonics are used in Example 6-2a; other
machines might further cloud the situation by requiring
operation-specific mnemonics like INPUT, OUTPUT,
LOAD, STORE, etc., instead of the MOV mnemonic used
for all variable transfers in the 8051 instruction set.

6-18

CHAPTER 6
8051 Family Boolean Processing Capabilities

— 4 — =

Q=(Ue(V+W)+ (XeY)+2Z
a. Using TTL

CR1

b. Using Relay Logic

Figure 6-12. Hardware Implementations of Boolean Functions

6-19

CHAPTER 6
8051 Family Boolean Processing Capabilities

FUNCTION FUNCTION
IS FALSE IS TRUE
CLEAR Q SET Q

Figure 6-13. Flow Chart for Tree-Branching Algorithm

The code that results is cumbersome and error prone. It
would be difficult to prove whether the software worked
for all input combinations in programs of this sort. Fur-
thermore, execution time varies widely with input data.

Thanks to the direct bit-test operations, a single instruc-
tion can replace each move mask conditional jump
sequence in Example 6-2a, but the algorithm would be
equally convoluted (see Example 6-2b). To lessen the
confusion, “a bit” each input variable is assigned a
symbolic name.

A more elegant and efficient implementation (Example
6-2c) strings together the Boolean ANL and ORL func-
tions to generate the output function with straight-line
code. When finished, the carry flag contains the result,
which is simply copied out to the destination pin. No
flow chart is needed — code can be written directly
from the logic diagrams in Figure 6-12. The result is
simplicity itself; fast, flexible, reliable, easy to design, and
easy to debug. :

An 8051 program can simulate an N-input AND or OR
gate with at most N + 1 lines of source program — one for
each input and one line to store the results. To simulate
NAND or NOR gates, complement the carry after com-
puting the function. When some inputs to the gate have
“‘inversion bubbles,” perform the ANL or ORL operation
on inverted operands. When the first input is inverted,
either load the operand into the carry and then comple-
mentit, or use DeMorgan’s Theorem to convert the gate
to a different form.

Example 6-2. Software Solutions to Logic Function
of Figure 6-12.

a. Using only byte-wide logical instructions.

;BUFNCI SOLVE RANDOM LOGIC FUNCTION
; OF 6 VARIABLES BY LOADING AND
; MASKING THE APPROPRIATE BITS
; IN THE ACCUMULATOR, THEN

; EXECUTING CONDITIONAL JUMPS
; BASED ON ZERO CONDITION.

; (APPROACH USED BY BYTE-

; ORIENTED ARCHITECTURES.)

; BYTE AND MASK VALUES

; CORRESPOND TO RESPECTIVE BYTE
; ADDRESS AND BIT POSITIONS.

OUTBUF DATA 22H ;OUTPUT PIN STATE MAP

TESTV: MOV AP2

ANL A#00000100B
JNZ TESTU

MoV A-TCON

ANL A,#00100000B
JZ TESTX

MOV AP1

ANL A,#00000010B

INZ SETQ

TESTU:

6-20

CHAPTER 6
8051 Family Boolean Processing Capabilities

TESTX:

TESTZ:

CLRQ:

SETQ:

ouTQ:

b. Using only bit-test instructions.

;BFUNC2 SOLVE RANDOM LOGIC FUNCTION
OF 6 VARIABLES BY DIRECTLY

)
)

ON<Xs < C -

TEST_V:

TEST_U:
TEST_X:

TEST Z:

MoV
ANL
Jz
MOV
ANL
JzZ
MoV
ANL
JZ
MOV
ANL
JMP
MOV
ORL
MOV
MOV

ATCON
A#00001000B
TESTZ

A20H
A.#00000001B
SETQ

A1H
A#00000010B
SETQ

A OUTBUF
A#11110111B
ouTQ

A OUTBUF
A,#00001000B
OUTBUF,A
P3.A

POLLING EACH BIT.

(APPROACH USING 8051-FAMILY UNIQUE
BIT-TEST INSTRUCTION CAPABILITY.)
SYMBOLS USED IN LOGIC DIAGRAM
ASSIGNED TO CORRESPONDING 8x51

BIT ADDRESSES.

BIT P1.1

BIT p2.2

BIT TFO

BIT 1E1

BIT 20H.0

BIT 21H.1

BIT P3.3

JB V,TEST_U
JNB W,TEST_X
JB USET_Q
JNB X,TEST_Z
JNB Y,SET_Q
JNB ZSET_Q

CLRQ: CLR Q
JMP NXTTST
SET_Q: SETB Q
NXTTST: ;CONTINUATION OF PROGRAM

c. Using logical operations on Boolean variables.
;FUNC3 SOLVE A RANDOM LOGIC FUNCTION

; OF 6 VARIABLES USING

; STRAIGHT_LINE LOGICAL

; INSTRUCTIONS ON 8051 BOOLEAN

; VARIABLES.

MOV CcVv

ORL CwW ; OUTPUT OF OR GATE

ANL cu ; OUTPUT OF TOP AND GATE
MOV Fo0,C ; SAVE INTERMEDIATE STATE
MoV C.X

ANL cy ; OUTPUT OF BOTTOM AND GATE
ORL CFo ; INCLUDE VALUE SAVED ABOVE
ORL CZz ; INCLUDE LAST INPUT VARIABLE
MoV QC ; OUTPUT COMPUTED RESULT

An upper limit can be placed on the complexity of soft-
ware to simulate a large number of gates by summing the
total number of inputs and outputs. The actual total
should be somewhat shorter, since calculations can be
“‘chained,” as shown above, The output of one gate is
often the first input to another, bypassing the intermedi-
ate variable to eliminate two lines of source.

Design Example #4 — Automotive Dash-
board Functions

Now let's apply these techniques to designing the soft-
ware for a complete controller system. This applicationis
patterned after a familiar real-world application which
isn’'t nearly as trivial as it might first appear: automobile
turn signals.

Imagine the 3-position turn lever on the steering column
as a single-pole, triple-throw toggle switch. In its central
position all contacts are open. In the up or down position,
contacts close causing corresponding lights inthe rear of
the car to blink. So far very simple.

6-21

CHAPTER 6
8051 Family Boolean Processing Capabilities

Two more turn signals blink in the front of the car, and two
others in the dashboard. All six bulbs flash when an
emergency switch is closed. A thermo-mechanical relay
(accessible under the dashboard in case it wears out)
causes the blinking.

Applying the brake pedal turns the tail light filaments on
constantly — unless a turn is in progress, in which case
the blinking tail light is not affected. (Of course, the front
turn signals and dashboard indicators are not affected by
the brake pedal.) Table 6-5 summarizes these operating
modes.

But we're not done yet. Each of the exterior turn signal
(but not the dashboard) bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 6-14 shows
TTL circuitry which could control all six bulbs. The signals
labeled “High Freq.” and “Low Freq.” represent two
square-wave inputs. Basically, when one of the turn
switches is closed or the emergency switch is activated,
the low frequency signal (about 1 Hz) is gated through to
the appropriate dashboard indicator(s) and turn
signal(s). The rear signals are also activated when the
brake pedal is depressed provided a turn is not being
made in the same direction. When the parking light
switch is closed the higher frequency oscillator is gated
to each front and rear turn signal, sustaining a low-
intensity background level. (This is to eliminate the need
for additional parking light filaments.)

In most cars, the switching logic to generate these
functions requires a number of multiple-throw contacts.
As many as 18 conductors thread the steering column of
some automobiles solely for turn-signal and emergency
blinker functions.

A multiple-conductor wiring harness runs to each corner
of the car, behind the dash, up the steering column, and
down to the blinker relay below. Connectors at each
termination for each filament lead to extra cost and labor
during construction, lower reliability and safety, and more
costly repairs. And considering the system’s present
complexity, increasing its reliability or detecting failures
would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, it shows that the hardest
part of many system designs is determining what the
controller should do. Writing the software to solve these
functions is comparatively easy. Secondly, it shows the
many potential failure points in the system. Later we'll
see how the peripheral functions and intelligence built
into a microcomputer (with a little creativity) can greatly
reduce external interconnections and mechanical parts
count.

Table 6-5. Truth Table for Turn-Signal Operation

Input Signals Output Signals
Left Right Left Right
Brak .
Sv;?i‘-eh g:::;% Turn Turn Front Front ,Eftt_ ﬁi_ght
Switch Switch & Dash & Dash near near
0 0 0 0 Off Off Off Off
0 0 0 1 Off Blink Off Blink
0 0 1 0 Blink Off Blink Off
0 1 0 0 Blink Blink Blink Blink
0 1 0 1 Blink Blink Blink Blink
0 1 1 0 Blink Blink Blink Blink
1 0 0 0 Off Off On On
1 0 0 1 Off Blink On Blink
1 0 1 0 Blink Off Blink On
1 1 0 0 Blink Blink On On
1 1 0 1 Blink Blink On Blink
1 1 1 0 Blink Blink Blink On

6-22

CHAPTER 6
8051 Family Boolean Processing Capabilities

L. TURN
EMERG Dﬂ} L. DASH
"___'D———— L. FRNT
BRAKE 1 \ 0_L/ "\ L REAR
R. TURN
.___j > ‘:D R. DASH
’_D—— R. FRNT
[
— = > o s
PARK
LO. HI.
FREQ. FREQ.
OSCILLATOR OSCILLATOR
Figure 6-14. TTL Logic Implementation of Automotive Turn Signals
The Single-Chip Solution EMERG BIT P1.1 ;EMERGENCY BLINKER
™ 5 ing . ACTIVATED
e circuit shown in Figure 6-15 indicates five input pins .
to the five input variables — left-turn select, right-turn ek BIT P12 ;PARKING LIGHTS ON
select, brake pedal down, emergency switch on, and L_TURN BIT P13 ;TURNLEVER DOWN
parking lights on. Six output pins turn on the front, rear, R _TURN BIT P14 ;TURNLEVERUP
and dashboard indicators for each side. The microcom- |
puter implements all logical functions through software, °’
which periodically updates the output signals as time QUTPUT PIN DECLARATIONS
elapses and input conditions change. :
Design Example #3 demonstrated that symbolic ad- L_FRNT BIT P15 ;FRONT LEFT-TURN
dressing with user-defined bit names makes code and INDICATOR
documentation easier to write and maintain. Accordingly, R_FRNT BIT P16 ;FRONTRIGHT-TURN
we’'ll assign these 1/0 pins names for use throughout the INDICATOR
program. (The format of this example will differ some- L_DASH BIT P17 :DASHBOARD LEFT-TURN
what from the others. Segments of the overail program
.) .) INDICATOR
will be presented in sequence as each is described.)
R_DASH BIT P2.0 ;DASHBOARD RIGHT-TURN
’ INDICATOR
’ INPUT PIN DECLARATIONS: L_REAR BIT P2.1 ;REARLEFT-TURN
; (ALL INPUTS ARE POSITIVE-TRUE LOGIC) INDICATOR
; R_REAR BIT P22 ;REARRIGHT-TURN
BRAKE BIT P10 ;BRAKE PEDAL DEPRESSED INDICATOR

6-23

CHAPTER 6
8051 Family Boolean Processing Capabilities

+12v

el +12v
-T~
3 > 3
i: $33¢ 8051 LEFT
| FRONT
BRAKE ~ P15
PEDAL —-0/. 490——— P1.0
= | RIGHT
T
EMERGENCY |_o— o o—P11 P18 FRON
SWITCH
PARKING | o % %—— P12 - p ;ignsouo
LIGHTS d ’ P17
LEFT =
o % So—— P13 RIGHT
TURN - P DASHBOARD
SWITCH ——— P20
RIGHT
o —{ P1.4 1
= | LEFT
P21 REAR
—e
-
= RIGHT
P22 REAR
-
MODE SIGNAL CONTROLLER OUTPUT SIGNAL
SENSORS CONDITIONING BUFFERS BULBS
Figure 6-15. Microcomputer Turn-Signal Connections
Another key advantage of symbolic addressing appears eee
further on in !he des:gq pyqle. .The. locations of cable - INTERRUPT RATE SUBDIVIDER
connectors, signal conditioning circuitry, voltage regula-
tors, and heat sinks, etc., all affect PC board layout. Itis ~ SUB_DIV. DATA 20H
quite likely that the somewhat arbitrary pin assignment ; HIGH-FREQUENCY OSCILLATOR BIT
defined early inthe software design cycle will prove to be HI_FREQ BIT SUB_DIV.0

less than optimum; rearranging the 1/O pin assignment

could well allow a more compact module, or eliminate ;s LOW-FREQUENCY OSCILLATOR BIT

costly jumpers on a single-sided board. (These consid- LO_FREQ BIT SUB-DIV.7

erations apply especially to automotive and other cost- .

sensitive applications needing single-chip controllers.)

Since other architectures use mask bytes or “clever” ORG 0000H

algorithms to isolate bits by rotating theminto the carry, JMP INIT

re-routing an input signal (from P1.1, for example, to

P3.4) could require extensive modifications throughout

the software. ORG 100H
; PUT TIMER 0 IN MODE 1

’

The Boolean Processor’s direct bit addressing makes

such changes trivial. The number of the port containing INIT: MOV TMOD,#00000001B
the pin is irrelevant, and masks and complex program - INITIALIZE TIMER REGISTERS
structures are not needed. Only the initial Boolean vari- MOV TLO#0
able declarations need to be changed; ASM51 automati- '
cally adjusts all addresses and symbolic references to the MoV THO#-16
reassigned variables. The user is assured that no addi- : SUBDIVIDE INTERRUPT RATE BY 244
tional debugging or software verificationwill be required. MOV SUB DIV #244
; ENABLE TIMER INTERRUPTS
SETB ETO

6-24

CHAPTER 6
8051 Family Boolean Processing Capabilities

; GLOBALLY ENABLE ALL INTERRUPTS

SETB EA
; START TIMER
SETB TRO

; (CONTINUE WITH BACKGROUND PROGRAM)
; PUT TIMER 0 IN MODE 1
; INITIALIZE TIMER REGISTERS

; SUBDIVIDE INTERRUPT RATE BY 244
; ENABLE TIMER INTERRUPTS

; GLOBALLY ENABLE ALL INTERRUPTS
; START TIMER

Timer 0 (one of the two on-chip timer/counters) replaces
the thermo-mechanical blinker relay in the dashboard
controller. During systeminitialization, it is configured as
atimerin mode 1 by setting the least significant bit of the
timer mode register (TMOD). In this configuration the
low-order byte (TLO) is incremented every machine
cycle, overflowing and incrementing the high-order byte
(THO) every 256 pus. Timer-interrupt 0 is enabled so that
a hardware interrupt will occur each time THO overflows.

An 8-bit variable in the bit-addressable RAM array is
needed to further subdivide the interrupts via software.
The lowest-order bit of this counter toggles very fast to
modulate the parking lights; bit 7 is “turned” to approxi-
mately 1 Hz for the turn- and emergency-indicator blink-
ing rate.

Loading THO with -16 will cause an interrupt after
4,096 ms. The interrupt service routine reloads the high-
order byte of timer 0 for the next interval, saves the CPU
registers likely to be affected on the stack, and then
decrements SUB_DIV. Loading SUB_DIV with 244 ini-
tially and each time it decrements to zero, will produce a
0.999 second period for the highest-order bit.

ORG 000BH ; TIMER 0 SERVICE VECTOR
MOV THO#-16

PUSH PSW

PUSH ACC

PUSH B

DINZ SUB_DIV,TOSERV

MoV SUB_DIV #244

The code to sample inputs, performs calculations, and
update outputs — the real essence of the signal-control-
ler algorithm — may be performed either as part of the

interrupt-service routine or as part of a background-
program loop. The only concern is that it must be exe-
cuted at least several dozen times per second to prevent
parking light flickering. We will assume the former case,
and insert the code into the timer 0 service routine.

First, notice from the logic diagram (Figure 6-14) that the
subterm (PARK - H_FREQ), asserted when the parking
lights are to be ondimly, figures into four of the six output
functions. Accordingly, we will first compute thattermand
save it in a temporary location named “DIM”. The PSW
contains two general purpose flags: FO, which corre-
sponds to the 8048 flag of the same name, and PSW.1.
Since the PSW has been saved and will be restored to its
previous state after servicing the interrupt, we can use
either bit for temporary storage.

DM BIT PSW.1 ;DECLARE TEMP STORAGE
FLAG

MOV C,PARK ; GATE PARKING LIGHT
SWITCH

ANL HI_FREQ ; WITH HIGH FREQUENCY
SIGNAL

MOV DIM,C ; AND SAVE IN TEMP
VARIABLE.

This simple 3-line selection of code illustrates a remark-
able point. The software indicates in very abstract terms
exactly what functionis being performed, independent of
the hardware configuration. The fact that these three bits
include aninput pin, a bit within a program variable, and
a software flag in the PSW is totally invisible to the
programmer.

Now generate and output the dashiboard ieft turn signal.
MOV C,L_TURN ; SET CARRY IF TURN
ORL C,EMERG ; OR EMERGENCY SELECTED.
ANL C,LO_FREQ ;GATEIN 1HZ SIGNAL
MOV L_DASH,C ; AND OUTPUT TO DASHBOARD.

Togenerate the left-front turn signal, we only need to add
the parking light function in FO. But notice that the
function in the carry will also be needed for the rear
signal. We can save effort later by saving its current state
in FO.

’

MOV FO,C ; SAVE FUNCTION SO FAR.
ORL C,DIM ; ADD IN PARKING LIGHT FUNCTION
MOV L_FRNT,C ; AND OUTPUT TO TURN SIGNAL.

6-25

CHAPTER 6
8051 Family Boolean Processing Capabilities

Finally, the rear left-turn signal should also be on when
the brake pedal is depressed, provided a left turn is not
in progress.

MOV C,BRAKE ; GATE BRAKE PEDAL SWITCH

ANL C,L_TURN ; WITH TURN LEVER.

ORL C,F0 ; INCLUDE TEMP. VARIABLE
FROM DASH

ORL C,DIM ; AND PARKING LIGHT FUNCTION

MOV L_REARC ; AND OUTPUT TO TURN SIGNAL

Now we have to go through a similar sequence for the
right-hand equivalents to all the left-turn lights. This also
gives us a chance to see how the code segments above
look when combined.

The perceptive reader may notice that simply rearrang-
ing the steps could eliminate one instruction from each
sequence.

Now that all six bulbs are in the proper states, we can
return from the interrupt routine, and the program is
finished. This code essentially needs to reverse the
status saving steps at the beginning of the interrupt.

POP B ; RESTORE CPU REGISTERS.
POP ACC

POP PSW

RETI

Program Refinements. The luminescence of an incan-
descent light bulb filament is generally non-linear; the

MOV C,R_TURN ; SET CARRY IF TURN 50% duty cycle of HI_FREQ may not produce the desired
ORL C.EMERG - OR EMERGENCY SELECTED. intensity. If the application requires, duty cycles of 25%,
' ' 75%, etc., are easily achieved by ANDing and ORing in
ANL CLO FREQ ;IF SO, GATE IN 1 HZ SIGNAL additional low-order bits of SUB_DIV. For example,
MOV R_DASH,C ; AND OUTPUT TO DASHBOARD. 30 Hz signals of seven different duty cycles could be
MOV FO,C - SAVE FUNCTION SO FAR. produced by considering bits 2-0 as shownin Table 6-6.
. The only software change required would be to the code
ORL CDIM FADD ML PARKING LIGHT which sets-up variable DIM:
MOV R_FRNT,C ; AND OUTPUT TO TURN SIGNAL MOV C,SUB_DIV. ; START WITH S0 PERCENT
MOV GBRAKE i GATE BRAKE PEDAL SWITCH | ANL - CSUB.DIVO ;MASKDOWN TO 25
' ' ORL C,SUB_DIV.2 ;AND BUILD BACK TO 62
ANL C,R_TURN ; WITH TURN LEVER. PERCENT
ORL C/F0 ; INCLUDE TEMP.VARIABLE FROM MOV DIMC - DUTY CYCLE FOR PARKING
DASH
LIGHTS.
ORL C,DIM ; AND PARKING LIGHT FUNCTION
MOV R_REAR,C ; AND OUTPUT TO TURN SIGNAL.
Tabie 6-6. Non-triviai Duty Cycies
Sub__Div Bits Duty Cycles
7 6 5 4 3 2 1 0| 125% 250% 37.5% 50.0% 62.5% 75.0% 87.5%
X X X X X 0 0 0 Off Off Off Off Off Off Off
X X X X X 0 0 1 Off Off Off Off Off Off On
X X X X X 0 1 o0 Off Off Off Off Off On On
X X X X X 0 1 1 Off Off Off Off On On On
X X X X X 1t 0 0 Oft Off Off On On On On
X X X X X 1 0 1 Off Off On On On On On
X X X X X 1 1 0 Off On On On On On On
X X X X X 1 1 1 On On On On On On On

6-26

CHAPTER 6
8051 Family Boolean Processing Capabilities

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure
6-15 is insufficient when many outputs require higher-
than-TTL drive levels. A lower-cost solution uses the
8051 serial portinthe shift-register mode to augment I/O.
In mode 0, writing a byte to the serial port data buffer
(SBUF) causes the data to be output sequentially
through the “RXD” pin while a burst of eight clock pulses
is generated on the “TXD” pin. A shift register connected
to these pins (Figure 6-16) will load the data byte as it is
shifted out. A number of special peripheral driver circuits
combining shift-register inputs with high drive level out-
puts are available.

Cascading multiple shift registers end-to-end will expand
the number of outputs even further. The data rate in the
I/0 expansion mode is 1 Mb/s, or 8 us per byte. Thisis the
mode which the serial port defaults to following a reset,
so no initialization is required.

The software for this technique uses the B register as a
“map” corresponding to the different output functions.
The program manipulates these bits instead of the
output pins. After all functions have been calculated, the
B register is shifted by the serial port to the shift-register
drive. The outputs may glitch as data is shifted through
them; at 1 Mb/s, however, the results (blinking lights) will
not be noticed. Many shift registers provide an “enable”
bit to hold the output states while new data is being
shifted in.

Thisiswhere the earlier decision to address bits symboli-
cally throughout the program pays off. This major /0
restructuring is nearly as simple to implement as rear-
ranging the input pins. Again, only the bit declarations
need to be changed.

L_FRNT BIT BO ;FRONTLEFT-TURN
INDICATOR

R_FRNT BIT B.1 ;FRONTRIGHT-TURN
INDICATOR

L_DASH BIT B.2 ;DASHBOARD LEFT-TURN
INDICATOR

R_DASH BIT B3 ;DASHBOARD RIGHT-TURN
INDICATOR

L_REAR BIT B4 ;REARLEFT-TURN INDICATOR

R_REAR BIT BS5 ;REARRIGHT-TURN
INDICATOR

The original program to compute the functions need not
change. After computing the output variables, the control
map is transmitted to the buffered shift register through
the serial port:

MOV SBUF,B ;LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of
advantages over older methods. Fewer switches are
required. Each is simpler, requiring fewer poles and
lower current contacts. The flasher relay is eliminated
entirely. Only six filaments are driven, rather than ten.
The wiring harnessis, therefore, simpler and less expen-
sive — one conductor for each of the six lamps and each
of the five sensor switches. The fewer conductors use far
fewer connectors. The whole system is more reliable.

And since the systemis much simplerit would be feasible
to implement redundancy and or fault detection on the
four main turn indicators. Each could still be a standard
double ‘ilament bulb, but with the filaments driven in
parallel to wlerate single-element failures.

8051

+12v

P30 o7 %%

Y

DATA

P3.1 CLK

Y

05 04 03 02 04 Og

8-BIT SHIFT REGISTER

Figure 6-16. Output Expansion Using Serial Port

6-27

CHAPTER 6
8051 Family Boolean Processing Capabilities

Even with redundancy, the lights will eventually fail. To
handle this inescapable fact, current or voltage sensing
circuits on each main drive wire can verify that each bulb
and its high-current driver is functioning properly. Figure
6-17 shows one such circuit.

Assume all of the lights are turned on except one, i.e., all
but one of the collectors are grounded. For the bulb that
is turned off, if there is continuity from + 12 V through the
bulb base and filament, the control wire, all connectors,
and the PC boards traces; and if the transistor is indeed
not shorted to ground, then the collector will be pulled to
+ 12 V. This turns on the base of Q7 through the

corresponding resistor, and grounds the input pin, verify-
ing that the bulb circuit is operational. The continuity of
each circuit can be checked by software in this way.

Now turn allthe bulbs on, grounding all the collectors. Q7
shouldbe turned off, and the Test pin (T0) should be high.
However, a control wire shorted to + 12 V or an open-
circuited drive transistorwould leave one of the collectors
at the higher voltage even now. This too would turn on
Q7, indicating a different type of failure. Software could
perform these checks once per second by executing the
routine every time the software counter SUB_DIV is
reloaded by the interrupt routine.

WIRING

+12v
HARNESS —

P1§

P1.6

P17

P2.0

P

P21

P22

BB BEAE

sV

YW

T0
Q7

Figure 6-17. Fault Detection

6-28

CHAPTER 6
8051 Family Boolean Processing Capabilities

DINZ SUB_DIV,TOSERV

MOV SUB DIV#244 :RELOAD COUNTER

ORL P2#11100000B ; SET CONTROL OUTPUTS
HIGH

ORL P2,#000001118

CLR L FRNT : FLOAT DRIVE COLLECTOR

JB T0,FAULT : TO SHOULD BE PULLED
LOW

SETB L FRNT : PULL COLLECTOR BACK
DOWN

CLR L _DASH

JB T0,FAULT

SETB L_DASH

CLR L_REAR

JB T0,FAULT

SETB L REAR

CLR R_FRNT

JB T0,FAULT

SETB R_FRNT

CLR R _DASH

JB T0,FAULT

SETB R _DASH

CLR R _REAR

JB T0,FAULT

SETB R_REAR

; WITH ALL COLLECTORS GROUNDED, T0 SHOULD BE HIGH
; IF SO, CONTINUE WITH INTERRUPT ROUTINE.
JB T0,TOSERV

FAULT: ; ELECTRICAL FAILURE
; PROCESSING ROUTINE
TOSERV: ; CONTINUE WITH
INTERRUPT PROCESSING

The resulting code consists of 67 program statements,
not counting declarations and comments, which as-
semble into 150 bytes of object code. Each pass through
the service routine requires (coincidentally) 67 s, plus
32 us once per second for the electrical test. If executed
every 4 ms as suggested, this software would typically
reduce the throughput of the background program by
less than 2%.

Once a microcomputer has been designed into a
system, new features suddenly become virtually free.
Software could make the emergency blinkers flash
alternately or at a rate faster than the turn signals. Turn
signals could override the emergency blinkers. Adding
more bulbs would allow multiple tail light sequencing
and syncopation.

Design Example #5 — Complex Control
Functions

Finally, we’ll mix byte and bit operations to extend the use
of the 8051 into extremely complex applications.

Programmers can arbitrarily assign /O pins to input and
output functions only if the total does not exceed 32,
which is insufficient for applications with a very large
number of input variables. One way to expand the num-
ber of inputs is with a technique similar to multiplexed-
keyboard scanning.

Figure 6-18 shows a block diagram for a moderately
complex programmable industrial controller with the fol-
lowing characteristics:

* 64 input variable sensors;
* 12 output signals;
* Combinational and sequential logic computations;

* Remote operation with communications to a host
processor via a high-speed full-duplex serial link;

* Two prioritized external interrupts;
¢ Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup-
port chips, an 8051 microcomputer needs no other inte-
grated circuits!

The 64 input sensors are logically arranged as an 8 x 8
matrix, The pins of Port 1 sequentially enable each
column of the sensor matrix; as each is enabled Port 0
reads inthe state of each sensorinthat column. An eight-
byte block in bit-addressable RAM remembers the data
as it is read in so that after each complete scan cycle
there is aninternal map of the current state of all sensors.
Logic functions can then directly address the elements of
the bit map.

The computer’s serial port is configured as a nine-bit
UART, transferring data at 17,000 bytes-per-second.
The ninth bit may distinguish between address and
data bytes.

6-29

CHAPTER 6

8051 Family Boolean Processing Capabilities

12M#Z2 —

+ 5V

RETURN
LINES
\

SERIAL |

LINK)
0|8 [16]2a]32]a0[a8|56
1 57
2 58
3 8x8 59
| warax | [®
5 61
6 62
7 15] 23| 31]39]47([55]63

SCAN
LINES

T 1.0uF
{ XTAL1 VCC RST
| XTAL2
RXD INTO
X0 INTH
8051
P34 p—m—m—m———
P0O.0
P35 p————————————
P01
P36 p——r———————
P0.2
P37 oo
P03
P04
P20 p—
P0.5
LR I e e ——
P0.6
P2 pb——m—————
P0O.7
P23 P
P4 b
P10 P25 p———————————
P11 P26
P12 P27 b—m—————
P13
P14
P15 ALE pb—a= NC
P16 PSEN NC.
P17 —
VSS EA

Figure 6-18. Block Diagram of 64-Input Machine Controller

- | ASYNCHRONANS

ae—— INTERRUPTS

MACHINE
ACTUATORS

6-30

CHAPTER 6
8051 Family Boolean Processing Capabilities

The 8051 serial port can be configured to detect bytes
with the address bit set, automatically ignoring all others.
Pins INTO and INT1 are interrupts configured respec-
tively as high-priority, falling-edge triggered and low-
priority, low-level triggered. The remaining 12 /O pins
output TTL-level control signals to 12 actuators.

There are several ways to implement the sensor matrix
circuitry, all logically similar. Figure 6-19a shows one
possibility. Each of the 64 sensors consists of a pair of
simple switch contacts in series with a diode to permit
multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded
active-high scan signals for enabling columns of the
matrix. The returnlines on rows where a contactis closed
are pulled high and read as logic ones. Open return lines
are pulled to ground by one of the 40 kQ resistors and are
read as zeros. The resistor values must be chosen to
ensure all return lines are pulled above the 2.0 V logic
threshold, eveninthe worst case, where allcontactsinan
enabled column are closed. Since PO is provided open-
collector outputs and high-impedance MOS inputs, its
input loading may be considered negligible.

The circuits in Figures 6-19b and d are variations on this
theme. When input signals must be electrically isolated
fromthe computer circuitry as in noisy industrial environ-
ments, phototransistors can replace the switch diode
pairs and provide optical isolation as in Figure 6—19b.
Additional opto-isolators could also be used on the con-
trol output and special signal lines.

The other circuits assume that input signals are already
at TTL levels. Figure 6-19c uses octal 3-state buffers
enabled by active-low scan signals to gate eight signals
onto Port 0. Port 0 is available for memory expansion or
peripheral chip interfacing between sensor matrix
scans. The 8-to-1 multiplexers in Figure 6-19d select
one of eight inputs for each return line as determined
by encoded address bits output on three pins of Port 1.
Five more output pins are thus freed for more control
functions. Each output can drive at least one standard
TTL or up to 10 low-power TTL loads without additional
buffering.

Going back to the original matrix circuit, Figure 6-20
shows the method used to scan the sensor matrix. Two
complete bit maps are maintained in the bit-addressable

region of the RAM; one for the current state and one for
the previous state read for each sensor. If the need
arises, the program could then sense input transitions
and or debounce contact closures by comparing each bit
with its earlier value.

The code in Example 6-3 implements the scanning
algorithm for the circuits in Figure 6-19. Each column is
enabled by setting a single bitin a field of zeroes. The bit
maps are positive logic; ones represent contacts that are
closed or isolators turned on.

Example 6-3.
INPUT—SCAN: ; SUBROUTINE TO READ
CURRENT STATE OF 64
SENSORS AND SAVE IN
RAM 20H-27H.
MOV RO,#20H ; INITIALIZE POINTERS
MOV Ri1,#28H ; FOR BIT MAP BASES.
MOV A#80H ; SET FIRST BIT IN ACC.
SCAN: MOV P1,A ; OUTPUT TO SCAN LINES.
RR A ; SHIFT TO ENABLE NEXT
COLUMN NEXT.
MOV R2A ; REMEMBER CURRENT
SCAN POSITION.
"MOV AP0 ; READ RETURN LINES.
XCH A@RO ; SWITCH WITH PREVIOUS
MAP BITS.
MOV @R1,A ; SAVE PREVIOUS STATE
AS WELL.
INC RO ; BUMP POINTERS.
INC Ri1
MOV AR2 ; RELOAD SCAN LINE MASK
JNB ACC.7,SCAN ;LOOP UNTIL ALL EIGHT

COLUMNS READ.
RET

What happens after the sensors have been scanned
depends on the individual application. Rather than
inventing some artificial design problem, software
corresponding to commonplace logic elements will be
discussed.

6-31

CHAPTER 6

8051 Family Boolean Processing Capabilities

+5V
T
< <4 < <
3 3 %ﬁﬁﬁf 3 +orex
0" g" 56" RETURN
4 P - - LINES
> .Egz 1*—. .E§Z [.;g;z r*,/
1 9" 57"
S . A
- — % B
4 ~ + t+ 4
44
- T
! 1 [f‘ i
] ! | !
b
[
T 15" 63
—_ 1 .
[o .Eiz [o] .E;Z o .E;Z
- hhﬁ. o \J *32PLL
8x40K IE:==E1:5:1:IE
N

SCAN
LINES

a. Using Switch Contact/Diode Matrix

Figure 6-19. Sensor Matrix Implementation Methods

8051

P0.0

P01

P0.2
P0.3
P04
P05
P0.6

PO.7

P10
P11
P12
P13
P14
P15
P16
P17

6-32

CHAPTER 6

8051 Family Boolean Processing Capabilities

1+
%]
]<

)

‘P
$ +Bx4K

RETURN
LINES

° AAA-

— W

Q

w - y . AAA

VWA

AAA

-/

% VA
+—-__-.____——1____—M—-4}

AAA

—— N

.
[

—
—4

8x40K

> <

\AZ
AAA

AAA.
v
A
)04
\NAZ
A,

SCAN
LINES

b. Using Optically-Coupled Isolators

Figure 6-19. Sensor Matrix Implementation Methods (continued)

8051

P0.0

P0.1

PO.2
P0.3
PO.4
PO.S
P0.6

PO.7

P1.0
P1.1
P12
P13
P1.4
P15
P16
P17

6-33

8051

r

8051 Family Boolean Processing Capabilities

CHAPTER 6

£9..
9.

.8S..
.45
.96..

.St
pl
LEb
4 ™
b
R T

in

N o e

o —l

6G.]

—pe]

—ed

1474
£ve
Zve
173
o~
AT8]

£vi

2G 74

Vi

e

P00
PO 1
PO 2
P03
PO.4
PO.5
P06
PO7
P1.0
P11
P12
P13
P14
P15
P17

YAZ

EAL
ZAZ

LAZ

AL

€Al
ZAL

AL

LAZ

VAL

EAL

c. Using TTL Three-State Buffers

ZAL

LAL

YAZ
€AZ
AT
LAZ
VAL
€AL

ZAL

) 1AL

Figure 6-19. Sensor Matrix Implementation Methods (continued)

6-34

CHAPTER 6
8051 Family Boolean Processing Capabilities

8051

0L UL

Do Dy Dy D3 Dg

Sf—s3"

Dg D7 Dp D1 D D3 D4y Dg Dg D7 Do Dy D2 D3 D4 D5 D
74151 74151 74151
C B A Y c’'s A Y

o
-J

C B A Y

S S
' 4 -

PO.0
PO.1
P0O.2
P0.3
P0.4
P0O.S
P0.6
PO.7

e

>~—
*~—
~—
—

b

a3
<

P12

d. Using TTL Data Selectors

Figure 6-19. Sensor Matrix Implementation Methods (continued)

6-35

CHAPTER 6

8051 Family Boolean Processing Capabillities

INPUT
SCAN

INITIALIZE MAP
BUFFER POINTERS
AND SCAN MASK

NO

[

OUTPUT SCAN
MASK TO SCAN
LINES;
STORE SHIFTED
MASK

READ RETURN
LINES AND UPDATE
BIT MAPS

|

INCREMENT
BUFFER POINTS

HAVE
ALL COLUMNS

BEEN SCANNED?

RETURN

Figure 6-20. Flowchart for Reading in Sensor Matrix

Combinatorial Output Variables. An output variable
which is a simple (or not so simple) combinational func-
tion of several input variables is computed in the spirit of
Design Example #3. All 64 inputs are represented in the
bit maps; in fact, the sensor numbers in Figure 6-19
correspond to the absolute bit addresses in RAM! The
code in Example 6-4 activates an actuator connected to
P2.2 when sensors 12, 23, and 34 are closed and
sensors 45 and 56 are open.

Example 6-4. Simple Combinatorial Output Varl-
ables.

; SET P2.2 = (12) (23) (34) (45) (56)

MoV C,12
ANL C.23
ANL C.34
ANL C,45
ANL C.56
Mov P2.2,C

Intermediate Variables. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control are not outputs, but rather relays whose
contacts figure into the computation of other functions. In
effect, these relays indicate the state of intermediate
variables of a computation.

The 8051 Family solution can use any directly address-
able bit for the storage of such intermediate variables.
Evenwhen all 128 bits of the RAM array are dedicated (to
input bit maps in this example), the accumulator, PSW,
and B register provide 18 additionalflags forintermediate
variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should
deactivate certain outputs. Figure 6-21 is a ladder dia-
gram for this situation. The interlock function could be
recomputed for every output affected, or it may be
computed once and saved (as implied by the diagram).
As the program proceeds this bit can qualify each output.

6-36

CHAPTER 6
8051 Family Boolean Processing Capabilities

—
- (=)
{1
I |
|

()
5O

G

Figure 6-21. Ladder Diagram for Output Override

Circuitry

Example 6-5. Incorporating Override signal into
actuator outputs.

CALL INPUT_SCAN

MoV Co

ORL C1

ORL C2

ORL C3

MoV Fo,.C

COMPUTE FUNCTION 0

ANL CFo0

MOV P1.0,C

COMPUTE FUNCTION 1

ANL C,F0

MoV P1.1,C

; COMPUTE FUNCTION 2
ANL C,F0
MOV P1.2,C

N ceee eeans

Latching Relays. A latching relay can be forced into
either the ON or OFF state by two corresponding input
signals, where it will remain until forced onto the opposite
state — analogous to a TTL Set-Resetflip-flop. The relay
isusedas anintermediate variable for other calculations.
Inthe previous example, the emergency condition could
be remembered and remain active until an “emergency
cleared” button is pressed.

Any flag or addressable bit may represent a latching relay
with a few lines of code (see Example 6-6).

Example 6-6. Simulating a latching relay.

:LSET SETFLAGOIFC=1
L_SET: ORL CFO

MOV FO,C
:L_RESET RESETFLAGOIFC=1
LRESET CPS C

ANL CFO

MOV FO.C

Time Delay Relays. A time delay relay does not respond
to an input signal until it has been present (or absent) for
some predefined time. For example, a ballast or load
resistor may be switched in series with a dc motor when
itis first tumed on, and shunted from the circuit after one
second. This sort of time delay may be simulated by an
interrupt routine driven by one of the two 8051 timer/
counters. The procedure followed by the routine de-
pends heavily onthe details of the exact function needed;
time-outs ortime delays with resettable or non-resettable
inputs are possible. If the interrupt routine is executed
every 10 ms the code in Example 6-7 will clear an
intermediate variable set by the background program
after it has been active for 2 s.

Example 6-7. Code to clear USRFLG after a fixed
time delay.

JNB USR_FLG,NXTTST

DIJNZ DLAY_COUNT,NXTTST

CLR USR_FLG

MOV DLAY_COUNT,#200
NXTTST: ceee e

6-37

CHAPTER 6
8051 Family Boolean Processing Capabillities

Serial Interface to Remote Processor. When it detects
emergency conditions represented by certain input
combinations (such as the earlier Emergency Override),
the controller could shut down the machine immedi-
ately and/or alert the host processor via the serial port.
Code bytes indicating the nature of the problem could
be transmitted to a central computer. In fact, at
17,000 bytes-per-second, the entire contents of both bit
maps could be sent to the host processor for further
analysisinless than amillisecond! If the host decides that
conditions warrant, it could alert other remote processors
in the system that a problem exists and specify which
shut-down sequence each should initiate.

Response Timing. One difference between relay and
programmed industrial controllers (when each is consid-
ered as a “black box") is their respective reaction times to
input changes. As reflected by a ladder diagram, relay
systems contain a large number of “rungs” operating in
parallel. Achange ininput conditions will begin propagat-
ing through the system immediately, possibly affecting
the output state within milliseconds.

Software, on the other hand, operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached. For
that reason the raw speed of computing the logical
functions is of extreme importance.

Here the Boolean processor pays off. Every instruc-
tion mentioned in this chapter completes in 1 or 2 us at
12 MHz — the minimum instruction execution time for
many other microcontrollers! A ladder diagram contain-
ing a hundred rungs, with an average of four contacts per
rung canbe replaced by approximately five hundredlines
of software. A complete pass through the entire matrix
scanning routine and all computation would require
about a millisecond; less than the time it takes for most
relays to change state.

A programmed controller which simulates each Boolean
function with a subroutine would be less efficient by at
least an order of magnitude. Extra software is needed for
the simulation routines, and each step takes longer to
execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation); most of those instructions
take longer to execute with microprocessors performing
multiple off-chip accesses; and calling and returning from
the various subroutines requires overhead for stack
operations.

In fact, the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback
parameters, collect and analyze execution statistics, or
perform system diagnostics.

Additional functions and uses

With the building-block basics mentioned above many
more operations may be synthesized by shortinstruction
sequences.

Exclusive-OR. There are no common mechanical de-
vices or relays analogous to the Exclusive-OR operation,
so this instruction was omitted from the Boolean Proces-
sor. However, the Exclusive-OR or Exclusive-NOR
operation may be performed in two instructions by con-
ditionally complementing the carry or a Boolean variable
based on the state of any other testable bit.

; EXCLUSIVE-OR FUNCTION IMPOSED ON CARRY

; USING FO AS INPUT VARIABLE.

XOR_F0: JNB FO,XORCNT
CPL c

; ("JB" FOR X-NOR)

XORCNT:

XCH. The contents of the carry and some other bit may
be exchanged (switched) by using the accumulator as
temporary storage. Bits can be moved into and out of the
accumulator simultaneously using the rotate-through-
carry instructions, though this would alter the accumula-
tor data.

; EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A

MOV C,USR_FLG
RRC A
MOV USR_FLG,C
RLC A

Extended Bit Addressing. The 8051 can directly ad-
dress 144 general-purpose bits for all instructions in
Figure 6-2b. Similar operations may be extended to any
bit anywhere on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR are
performed on byte variables using six different address-
ing modes, one of which lets the source be animmediate
mask, and the destination any directly addressable byte.
Any bit may thus be set, cleared, or complemented with
athree-byte, two-cycle instruction if the mask has all bits
but one set or cleared.

Byte variables, registers, and indirectly addressed RAM
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred, the
bits may be tested with a conditional jump, allowing any
bit to be polled in 3 us — still much faster than most
architectures — or used for logical calculations. This
technique can also simulate additional bit addressing
modes with byte operations.

6-38-

CHAPTER 6
8051 Family Boolean Processing Capabilities

Parity of bytes or bits. The parity of the currentaccumu-
lators contents is always available in the PSW, from
whence it may be moved to the carry and further proc-
essed. Error-correcting Hamming codes and similar
applications require computing parity on groups of iso-
lated bits. This canbe done by conditionally complement-
ing the carry flag based on those bits or by gathering the
bits into the accumulator (as shown inthe DES example)
and then testing the parallel parity flag.

Multiple byte shift and CRC codes. Though the 8051
serial port can accommodate 8- or 9-bit data transmis-
sions, some protocols involve much longer bit streams.
The algorithms presented in Design Example 6-2 can be
extended quite readily to 16 or more bits by using multi-
byte input and output buffers.

Many mass data storage peripherals and serial commu-
nications protocols include Cyclic Redundancy (CRC)
codes to verify data integrity. The function is generally
computed serially by hardware using shift registers and
Exclusive-OR gates, but it can be done with software. As
each bit is received into the carry, appropriate bits in the
multi-byte date buffers are conditionally complemented
based on the incoming data bit. When finished, the CRC
register contents may be checked for zero by ORing the
two bytes in the accumulator.

SUMMARY

A unique facet of the 8051 Family microcomputer family
designis the collection of features optimized for the one-
bit operations so often desired in real-world, real-time
control applications. Included are 17 specialinstructions,
a Boolean accumulator, implicit and direct-addressing
modes, program and mass-data storage, and many /O
options. These are the world’s first single-chip microcom-
puters able to efficiently manipulate, operate on, and
transfer either bytes or individual bits as data.

This chapter has detailed the information needed by a
microcomputer systemdesignerto make fulluse of these
capabilities. Five design examples were used to contrast
the solutions allowed by the 8051 and those required by
previous architectures. Depending on the individual
application, the 8051 solution will be easier to design;
more reliable to implement, debug, and verify; use less
program memory; and run up to an order-of-magnitude
faster than the same function implemented on previous
digital-computer architectures.

Combining byte- and bit-handling capabilities in a single
microcomputer has a strong synergistic effect; the power
of the result exceeds the power of byte- and bit-proces-
sors laboring individually. Virtually all user applications
will benefitin some ways from this duality. Data-intensive
applications will use bit addressing for test pin monitoring
orprogram control flags; control applications willuse byte
manipulation for parallel I/O expansion or arithmetic
calculations.

6-39

SECTION II

1

8051 Family Device Description

Section Il contains the data sheets, device-specific
application information, software routines, third-party
development support, and package outlines.

The data sheets are divided into three chapters corre-
sponding to three product families. In general, devices
are listed in order of increasing functionality. EPROM

data sheets follow the ROM data sheets with which they
are associated.

Application information and software routines immedi-
ately follow the data sheets for which they are most
closely intended, although they will also be of use with
data sheets of more enhanced devices.

Chapter 7 Chapter 8 Chapter 9
80C51 Family 80C521 Family 80C324
Industry Standard Watchdog Timer/ Port Expansion
CMOS Products Dual Data Pointers Mode
Memory (bytes)
ROM/RAM
16K/256 80C541
8K/256
80C52T2 80C521 80C324
4Ki256 80C51BH

Functionality

CHAPTER 7

80C51 Family
80C51BH/80C31BH/80C52T2/80C32T2 Data Sheet 7-1
87C51/87C52T2 Data Sheet 7-13

Designing with the 80C51BH Applications Note 7-27

80C51BH/80C31BH/80C52T2/80C32T2

CMOS Single-Chip Microcontrollers

DISTINCTIVE CHARACTERISTICS

Industry: Standard CMOS Microcontrollers
Low Power Modes—Idle & Power-Down
32 Programmable 1/0 Lines

Two 16-bit Counter/Timers

Programmable Serial Channel

- Five-source, two-level Interrupt Structure
- Boolean Processor

64K bytes Program Memory Space

® 64K bytes Data Memory Space

RAM ROM
(bytes) (bytes)
80C31BH 128 -
80C51BH 128 4K
80C32T2 256 —_
80C52T2 256 8K

80C51BH = 80C31BH+ 4K bytes ROM
80C52T2 = 80C32T2+ 8K bytes ROM

GENERAL DESCRIPTION

The 80C51BH and 80C31BH are CMOS versions of the
industry-standard 8051 architecture. The 80C52T2 and
80C32T2 are identical products except they contain double
the on-chip memory.

Both the 80C51BH and 80C31BH include 128 bytes of
RAM, while the 80C52T2 and 80C32T2 include 256 bytes
of RAM. The 80C51BH i des of cu

ROM program memory ¢ <

These CMOS products tetain
NMOS counterparts: 32 120 fines; two 16-bit

timers; a full-duplex serial port; a five-source, two-level
interrupt structure; and an on-chip oscillator and clock
circuits.

In addition, all CMOS 80C51-based products have two
software-selectable modes of reduced activity for further
power conservation—Idle and Power-Down. In the Idle
ile the RAM, timers, serial port,
o function. In the Power-
and all other functions are

PLCC packages offer
ilizing previously unused
‘and"Vgg connections.

BLOCK DIAGRAM

FREQUENCY
REFERENCE

COUNTERS

L

ROM RAM
OSCILLATOR 4K BYTES 128 BYTES TWO 16-BIT
- M&ING (80C51 ONLY) 256 BYTES Tgﬂ/EVENT
8K BYTES UNTERS
L 10T (80C52T2/80C32T2)
80C51
cPU <L
PROGRAMMABLE
64K-BYTE BUS SERIAL PORT
EXPANSION PROGRAMMABLE 10 « FULL DUPLEX
CONTROL ART
+ SYNCHRONOUS
SHIFTER
INTERRUPTS [] { 1 []
INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS N T
AND VO PINS
BD007232

Publication # Rev. Amendment
04815 D /0
Issue Date: October 1989

80C51BH/80C31BH/80C52T2/80C32T2

|

CONNECTION DIAGRAMS

Top View
DIP PLCC
80C51BH/80C31BH 80C51BH/80C31BH
80C52T2/80C32T2
po []1® ~] Vec
Pa]2 39 [] po.o AD,
rm2[]s 38 [] Po.1 AD, «a8z9,8353
a4 3 poz A, f2iide83edd
M"Eﬁ 36 P03 ADy ¢ 6 4 3 2 1 4443 2 40
ps[]e 3 P04 ADg 7 ° » [ros
rs[]7 34 7] PoSs ADg nfros
Pz []s 33 [Pos ADg : ::
RsT []9 32[] P07 AD,y <ha
Rxo p3.0 [] 10 W& Y
™o P31 [1 30 [ALE nhas
iNT, P22] 12 2 [] PEEN =[] A
Wy P33 [12 2 [] P27 Ay nfrer
To P34 [] 4 27 7] P26 Ay bod et
T pas [28 [p2s Ay b
Mn.lC:u 25:?2.IA|. 18 19 20 20 22 23 24 26 26 27 20
m par O v # [P22 Ay TEgifedsiig
XTAL; [18 2[] P22 Ay £ &
XTALy] 19 2[T) P21 A, CD009443
Ves [] 20 2 [P20 A
CD005554
PLCC
80C52T2/80C32T2

i2dzif8didd

6 5 4 3 2 1 44 2 &0

P18 POA
P18 * PO.8
P17 P08
RST PO.7
P30 EA
NC Vgs
P31 ALE
P2 BN
P33 P2.7
P34 (1]
P38 P2.6
CD009444

Note: Pin 1 is marked for orientation.

80C51BH/80C31BH/80C52T2/80C32T2

LOGIC SYMBOL

X v“' |Vcc lm

z

1

TN

ADDRESS & DATA BUS

XTAL,

1ol

HTTTTHT IR

EA —]

PSEN <o

ALE ~——

RXD ———e —-——]
TXD —-— B
NTy — -—
Nty —— | ©] b
el | S §
Ty — —
WR ~—— —
9 A - -—

T

LS001323

80C51BH/80C31BH/80C52T2/80C32T2

7-3

|
|0

ORDERING INFORMATION
Commodity Products

b. Package Type
c. Device Number
d. Speed Option

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

e. Optional Processing

80C51BH

b. PACKAGE TYPE

l— e. OPTIONAL PROCESSING
Blank = Standard processing

d. SPEED OPTION
Blank = 0.1 to 12 MHz
-1=0.1 to 16 MHz
-20=10.1 to 20 MHz (preliminary)

c. DEVICE NUMBER/DESCRIPTION
80C51BH/80C31BH/80C52T2/80C32T2
CMOS Single-Chip Microcontrollers

P = 40-Pin Plastic DIP (PD 040)
N = 44-Pin Plastic Leaded Chip Carrier (PL 044)

a. TEMPERATURE RANGE*
Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C)

Valid Combinations

Valid Combinations list configurations planned to be

supported in volume for this device. Consult the local
AMD sales office to confirm availability of specific valid

combinations, to check on newly released valid combi-

nations, and to obtain additional data on AMD's stan-
dard military grade products.

Valid Combinations
80C51BH
P, N 80C51BH-1
IP, IN 80C31BH
80C31BH-1
80C31BH-20
P, N 80C52T2-1
IP, IN 80C32T2-1

range.

*This device will also be available in Military temperature

7-4

80C51BH/80C31BH/80C52T2/80C32T2

PIN DESCRIPTION

Port 0 (Bidirectional, Open Drain)
Port 0 is an open-drain bidirectional 1/O port. Port 0 pins that
have 1s wriiten to them float, and in that state can allow
them to be used as high-impedance inputs.

Port 0 is also the multiplexed Low-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting 1s. Port O also outputs the code bytes during
program verification in the 80C51BH. External pullups are
required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have 1s written to them are pulled
High by the internal puliups and can be used as inputs while
in this state. As inputs, Port 1 pins that are externally being
pulled Low will source current (Ij. on the data sheet)
because of the internal pullups.

Port 1 also receives the Low-order address bytes during
program verification.

Port 2 (Bidirectional)
Port 2 is an 8-bit bidirectional 1/0 port with internal puliups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having 1s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 2 pins externally being pulled Low
will source current (lj) because of the internal pullups.

Port 2 emits the High-order address byte during fetches
from external Program Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTR). In this application it uses strong internal pullups
when emitting 1s. During accesses to external data memory
that use 8-bit addresses (MOVX @Ri), Port 2 emits the
contents of the P2 Special Function register.

Port 2 also receives the High-order address bits during ROM
verification.

Port 3 (Bidirectional)
Port 3 is an 8-bit bidirectional I/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins that have 1s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 3 pins externally being pulled
Low will source current (lji) because of the pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

P30 RxD (serial input port)

P3.1 TxD (serial output port)

P32 INTo (external interrupt 0)

P33 INT{ (external interrupt 1)

P34 To (Timer O external input)

P3s T4 (Timer 1 external input)

P36 WR (external Data Memory write strobe)
P37 RD (external Data Memory read strobe)

RST Reset (Input, Active High)
A High on this pin (for two machine cycles while the
oscillator is running) resets the device. An internal diffused
resistor to Vgs permits power-on reset, using only an
external capacitor to Vcc.

ALE Address Latch Enable (Output, Active High)
Address Latch Enable is the output pulse for latching the
Low byte of the address during accesses to external
memory.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Output, Active Low)
PSEN is the read strobe to external Program Memory. When
the 80C51BH is executing code from external program
memory, PSEN is activated twice each machine cycle—
except that two PSEN activations are skipped during each
access to external Data Memory. PSEN is not activated
during fetches from internal Program Memory.

EA External Access Enable (Input, Active Low)
EA must be externally held Low to enable the device to
fetch code from external Program Memory locations 0000H
to OFFFH. If EA is held High, the device executes from
internal Program Memory unless the program counter
contains an address greater than OFFFH.

XTAL4 Crystal (Input)
Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)
Output from the inverting-oscillator amplifier.

Vcc Power Supply
Supply voltage during normal, idle, and power-down
operations.

Vgs Circuit Ground

80C51BH/80C31BH/80C52T2/80C32T2

FUNCTIONAL DESCRIPTION
Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier which is configured for use as an on-chip
oscillator (see Figure 1). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL4
should be driven while XTAL; is left unconnected (see Figure
2). There are no requirements on the duty cycle of the
external-clock signal since the input to the internal clocking
circuitry is through a divide-by-two flip-flop, but minimum and
maximum High and Low times specified on the data sheet
must be observed.

TCO003383

Figure 3. Idle and Power-Down Hardware

TABLE 1. PCON (Power Control Register)

TC003392
Figure 2. External Drive Configuration

Note: Different from NMOS configuration.

Idle and Power-Down Operation

Figure 3 shows the internal Idle and Power-Down clock
configuration. As illustrated, Power-Down operation freezes
the oscillator. Idle mode operation shows the interrupt, serial
port, and timer blocks to continue to function while the clock to
the CPU is halted.

These special modes are activated by software via the Special
Function Register, PCON (Table 1). Its hardware address is
87H; PCON is not bit-addressable.

If 1s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is '"0XXX0000."

(MSB) (LSB)
_.l: N—— XTAL 3
{ D sMob| - | - | - |aFi|aGFo| PD | DL
—-E ——— XTAL
Symboi | Position | Name and Description
Vss SMOD | PCON.7 Double-baud-rate bit. When set to a
1 1, the baud rate is doubled when
- the serial port is being used in
TC003411 either modes 1, 2, or 3.
Figure 1. Crystal Oscillator - PCON.6 (Reserved)
- PCON.5 (Reserved)
- PCON.4 (Reserved)
NC XTAL, GF1 PCON.3 General-purpose flag bit
EXTERNAL GFo0 PCON.2 General-purpose flag bit
OSCILLATOR XTAL ¢ PD PCON.1 Power-Down bit. Setting this bit
SIGNAL activates power-down operation.
Vss IDL PCON.0 Idle-mode bit. Setting this bit
activates idle-mode operation.
=
- Idle Mode

The instruction that sets PCON.O is the last instruction
executed in the normal operating mode before Idle mode is
activated. Once in the Idle mode, the CPU status is preserved
in its entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, RAM, and all other registers
maintain their data during Idle. Table 2 describes the status of
the external pins during Idle mode.

There are two ways to terminate the Idle mode. Activation of
any enabled interrupt will cause PCON.O to be cleared by
hardware, terminating Idle mode. The interrupt is serviced, and
following RETI, the next instruction to be executed will be the
one following the instruction that wrote a 1 to PCON.0.

The flag bits GFO and GF1 may be used to determine whether
the interrupt was received during normal execution or during
the Idle mode. For example, the instruction that writes to
PCON.O can also set or clear one or both flag bits. When Idle
mode is terminated by an enabled interrupt, the service routine
can examine the status of the flag bits.

The second way of terminating the Idle mode is with a
hardware reset. Since the oscillator is still running, the

7-6

80C51BH/80C31BH/80C52T2/80C32T2

hardware reset needs to be active for only 2 machine cycles
(24 oscillator periods) to complete the reset operation.

Power-Down Mode

The instruction that sets PCON.1 is the last executed prior to
going into Power-Down. Once in Power-Down, the oscillator is
stopped. Only the contents of the on-chip RAM are preserved.
The Special Function Registers are not saved. A hardware
reset is the only way of exiting the Power-Down mode.

In the Power-Down mode, Vcc may be lowered to minimize
circuit power consumption. Care must be taken to ensure the
voltage is not reduced until the Power-Down mode is entered,
and that the voitage is restored before the hardware reset is
applied, which frees the oscillator. Reset should not be
released until the oscillator has restarted and stabilized.

Table 2 describes the status of the external pins while in the
Power-Down mode. It shouid be noted that if the Power-Down
mode is activated while in external program memory, the port
data that is held in the Special Function Register P2 is
restored to Port 2. If the data is a 1, the port pin is held High
during the Power-Down mode by the strong pullup, P1, shown
in Figure 4.

80C51BH 1/0 Ports

The /0 port drive of the 80C51BH is similar to the 8051. The
1/0 buffers for Ports 1, 2, and 3 are implemented as shown in
Figure 4.

When the port latch contains a 0, all pFETS in Figure 4 are off
while the nFET is turned on. When the port latch makes a 0-to-
1 transition, the nFET turns off. The strong pullup pFET, Py,
turns on for two oscillator periods, pulling the output High very
rapidly. As the output line is drawn High, pFET P3 turns on
through the inverter to supply the IpH source current. This
inverter and P3 form a latch which holds the 1 and is
supported by Pa.

When Port 2 is used as an address port, for access to external
program of data memory, any address bit that contains a 1 will
have its strong pullup turned on for the entire duration of the
external memory access.

When an 1/0 pin on Ports 1, 2, or 3 is used as an input, the
user should be aware that the external circuit must sink
current during the logical 1-to-0 transition. The maximum sink
current is specified as It under the D.C. Specifications. When
the input goes below approximately 2 V, P3 turns off to save
Icc current. Note, when returning to a logical 1, P2 is the only
internal pullup that is on. This will result in a slow rise time if
the user's circuit does not force the input line High.

TABLE 2. STATUS OF THE EXTERNAL PINS DURING IDLE AND POWER-DOWN MODES

Mode Program Memory | ALE | PSEN PORTO PORT1 PORT2 PORT3
Idle Internal 1 1 Port Data Port Data Port Data Port Data
Idle External 1 1 Floating Port Data Address Port Data

Power-Down Internal 0 Port Data Port Data Port Data Port Data
Power-Down External 0 Floating Port Data Port Data Port Data

2 OSC. PERIODS

Vce

o
L]

Vee
Jﬂd
— | L]
PORT
r_] [/ PIN
o= ;“
FROM PORT
LATCH
INPUT
DATA
READ
PORT PIN
TC003402

Figure 4. 1/0 Buffers in the 80C51BH (Ports 1, 2, 3)

80C51BH/80C31BH/80C52T2/80C32T2

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C
Voltage on Any

Pin to Vss
Voltage on Vg to Vsg

Power Dissipation

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

-0.5 Vto Voo +05 V
....-05Vto 65V

OPERATING RANGES

Commercial (C) Devices

Temperature (TA)....coveveveiiiriiirineeeninnenn. 0 to +70°C
80C51BH/80C31BH

Supply Voltage (VGG)..-ovvvvivvneininnnn. +4 Vito +6 V
80C52T2/80C32T2

Supply Voltage (Vce)
Ground (Vss)

Industrial (I) Devices
Temperature (Ta)
80C51BH/80C31BH

Supply Voltage (Vce)
80C52T2/80C32T2

Supply Voltage (Vco)..
Ground (Vss)

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Parameter
Symbol Description Test Conditions Min. Max. Units
ViL Input Low Voltage (Except EA) -0.5 .2 Vcg-0.1 v
ViL1 Input Low Voltage (EA) -05 .2 Vcc-0.3 \
ViH Input High Voltage (Except XTAL4, RST) 0.2 Vcc+0.9| Voo +0.5 \
ViH1 Input High Voltage (XTAL{ RST) 0.7 Vee Vcc +0.5 v
VoL Output Low Voltage (Ports 1, 2, 3) loL = 1.6 mA (Note 1) 0.45 \
Vo1 Output Low Voltage (Port 0, ALE, PSEN) loL =3.2 mA (Note 1) 0.45 v
loH=-60 WA, Voo =5 Vt10% 2.4 v
VoH Output High Voltage (Ports 1, 2, 3) loH=-25 WA 0.75 Vco v
IoH =-10 wA 0.9 Vco v
v e loH =-400 pA, Voo =5 V+10% 2.4 v
Output High Volt Port 0 in Ext | Bus Mode,
VOH1 AEEFTUP_S'E!%) age (Port 0 in ernal Bus loH =-150 pA 0.75 Voo v
IoH =-40 WA (Note 2) 0.9 Voo v
L Logical O Input Current (Ports 1, 2, 3) VIN=0.45 V -50 HA
ITL Logical 1 to 0 Transition Current (Ports 1, 2, 3) ViN=2V -850 MA
Ll Input Leakage Current (Port 0, EA) 0.45 < V)N < Voo +10 HA
RRST Reset Pulldown Resistor 50 150 k2
CIo Pin Capacitance Test Freq. =1 MHz, Tp = 25°C 10 pF
lpp Power Down Current Vcc=2 to 6 V (Note 3) 50 HA
80C51BH/80C31BH MAXIMUM Icc (mA)
Operating (Note 4 Idle (Note 5)
Freq. Vcc 4V 5V 6V 4V 5V 6V
0.1 MHz 1.2 15 25 05 0.7 11
3.5 MHz 43 5.7 7.5 1.1 1.6 2.2
8.0 MHz 8.3 11 14 1.8 27 3.7
12 MHz 12 16 20 25 3.7 5
16 MHz 16 20.5 25 3.5 5 6.5
80C52T2/80C32T2 MAXIMUM Icc (mA)
Operating (Note 4 Idle (Note 5)
Freq. Vcc 4.5 V 5.0 V 55V 4.5 V 50 V 5.5 V
0.1 MHz 2.2 3.1 3.8 0.7 0.9 1.4
3.5 MHz 6 8 10 1.5 3
8.0 MHz 1" 14 18 25 3.5 5
12 MHz 15 20 25 35 6
16 MHz 19 25 32 4.5 6.5 8.5
Notes:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be sugerimposed on the Vq(S of ALE and Ports 1 and 3. The noise

is due to external bus capacitance discharging into the Port 0 and Port

pins when these pins make 1-to-0 transitions during bus

operations. In the worst cases (ca&acitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be

desirable to qualify ALE with a

address bits are stabilizing.

prW

RST = Port 0 =V,

lec
5. Igle
XTAL2 NC; Port 0= Vce: =Vsgs.

hmitt Trigger, or use an address
2. Capacitive loading on Ports 0 and 2 may cause the Von on ALE and

. Power-Down Icc is measured with all outputs pins disconnected: EA = Port 0 = Vog;
L lr&;g iﬁeasursd with all output pins disconnected; XTAL4 driven with TCLCH, TCHCL -%

would be slightly higher ffa crystal oscillator is used.
Icc is measured with aButpgts gins disconnected; XTAL4 driven with TCLCH, TCHCL =5 ns, V|_L=Vgg + 0.5V, V|4 =Vcc-0.5 V;

with a Schmitt-Tri
to momentarily fall

XTAL2 N.C; RST =V,
ns,ViL=Vgs+05V,

ger STROBE input.
efore the .9 Vcc specification when the

S.
\?m =Vcc-0.5V; XTAL,

80C51BH/80C31BH/80C52T2/80C32T2

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified
(C.for Port 0, ALE and PSEN Outputs = 100 pF; C.for All Other Outputs =80 pF)

Parameter| Parameter - - illatol |
Symbol Description Min Max Min Max Min | Max Min Max Units
External Program and Data Memory Characteristics
1/TCLCL Oscillator Frequency | 0.1 20 0.1 16 0.1 12 0.1 16 MHz
TLHLL ALE Pulse Width 60 85 127 2TCLCL-40 ns
TAVLL Address Valid to

ALE Low 20 7 28 TCLCL-55 ns
TLLAX Address Hold After

ALE Low 15 27 48 TCLCL-35 ns
TLLIV ALE Low to Valid

Instr. In 120 150 234 4TCLCL-100| ns
TLLPL ALE Low to

PSEN Low 25 22 43 TCLCL-40 ns
TPLPH PSEN Pulse Width 115 142 205 3TCLCL-45 ns
TPLIV PSEN Low to Valid

Instr. In 75 83 145 3TCLCL-105| ns
TPXIX Input Instr. Hold

After PSEN 0 0 0 0 ns
TPXIZ Input Instr. Float

er PSEN 35 38 59 TCLCL-25 ns

TAVIV Address to Valid

Instr. In 165 208 312 S5TCLCL-105| ns
TPLAZ PSEN Low to

Address Float 0 10 10 10 ns
TRLRH RD Pulse Width 200 275 400 6TCLCL-100 ns
TWLWH WR Pulse Width 200 275 400 6TCLCL-100 ns
TRLDV RD Low to Valid

Data In 145 148 252 5TCLCL-165| ns
TRHDX Data Hold After RD 0 0 0 0 ns
TRHDZ Data Float After RD 60 55 97 2TCLCL-70| ns
TLLDV ALE Low to Valid

Data In 310 350 517 8TCLCL-150| ns
TAVDV Address to Valid

Data In 350 398 585 9TCLCL-165| ns
TLLWL ALE Low to RD

or WR Low 100 200 137 238 200 300 3TCLCL-50| 3TCLCL +50 ns
TAVWL Address Valid to

Read or Write Low 110 120 203 4TCLCL-130 ns
TQVWX Data Valid to WR

Transition 95 2 23 TCLCL-60 ns
TQVWH Data Valid to

Write High 200 287 433 7TCLCL-150 ns
TWHQX Data Hold After WR 25 12 33 TCLCL-50 ns
TRLAZ RD Low to Address

Float 0 0 0 0 ns
TWHLH RD or WR High to

ALE High 20 70 22 103 43 123 TCLCL-40 | TCLCL+40 ns

80C51BH/80C31BH/80C52T2/80C32T2 7-9

SWITCHING WAVEFORMS

< TLHLL—=|

ALE / \

TAVLL |
-TAVLL= TLLPL TPLPH

TLLIV
\ TPLIV
PSEN
TPXIZ

TLLAX |«—=| |=—TPLAZ TPXIX —=

I

— s
INSTR .
PORTO >‘<\ ADg-AD7 9 N ADg-AD7

TAVIV

4
PORT 2 y Ag-Ats X Ag-A1s
\

External Program Memory Read Cycle

WF021962

TWHLH fo—e|

A
PSEN

LE_/
/

!

TLLDV

——TLLWL —= TRLRH
n—o \ /

~—— TRLDV ——
TAVLL: [——| TRHDZ

FTLLAX] | [—-TRLAZ TRHDX—~ l-—
ADg-AD7 INSTR
'/ FROM PCL N

{ ADo-AD; A

PORTO FROM RI OR DPL | oataw

N

TAVWL

ADQ-AD;

TAVDV

PORT 2 P20-P27 OR Ag-Ay5 FROM DPH x Ag-A1s FROM PCH

WF020962

External Data Memory Read Cycle

80C51BH/80C31BH/80C52T2/80C32T2

SWITCHING WAVEFORMS (continued)

TWHLH |+—|

we /L
_/

PSEN \ ,
— TLLWL—————— TWLWH
WA /
TQVWX
| TWHQX
TAVLL TLLAX |} TQVWH l
ADg-AD: ADg-AD INSTR
ronr s VR Hk o
TAVWL
PORT 2 X P2.0-P2.7 OR Ag-Ais FROM DPH X Ag-Ais FROM PCH
WF020932
External Data Memory Write Cycle
wstRucToN | o | 1 1 2 | s) o4«] s | s [| s |

ALE

fe=TxLxL>

cock ™ M~ o | M [] M s | m r
—J —J | — | | — —J —_ | S— —J

TQVXH fa——ee] |a=TxHOX |
OUTPUT DATA AN D D G D G D G D G D Gl
SET n
WRITE TO SBUF T"”DVL_" Ji" TXHDX
WPUT DATA Quauo) XX Xvauo)X Xvao)X XvaeX XvaoX XvauoX_ XvALo)
SET N
CLEAR A
WF020951

Shift Register Timing Waveforms

80C51BH/80C31BH/80C52T2/80C32T2

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Units
1/TCLCL Oscillator Frequency 0.1 20 MHz
TCHCX High Time 20 ns
TCLCX Low Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
Vec-08 “Feivee 1\
045V 02Vgc-0.1 = Yewex
} TOLCX — =gl TOLCH
TCHCL TCeLCL |
WF020910
External Clock Drive Waveform

SERIAL PORT TIMING — SHIFT REGISTER MODE
Test Conditions: Tpo =0°C to 70°C; Vcc=5 V +20%; Vss =0 V; Load Capacitance = 80 pF

WF020901

AC inputs during testing are driven at Vcc - 0.5 for a logic 1 and 0.45 V
for a logic 0. Timing measurements are made at Viy min. for a logic 1
and V)_ max. for a logic 0.

AC Testing Input/Output Waveforms

16 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Units
TXLXL Serial Port Clock Cycle Time 750 12TCLCL ns
TQVXH Output Data Setup to Clock Rising Edge 492 10TCLCL - 133 ns
TXHQX Output Data Hold After Clock Rising Edge 8 2TCLCL- 117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 492 10TCLCL - 133 ns
Vec-05
cc 02 VGG +08 VLoAD*01 V VoH=041 V
VLoAD TIMING REFERENCE
02 Vg -0 POINTS
045 V VLoAD-01 V VoL+01 vV

WF020941

For timing purposes a port pin is no longer floating when a 100 mV
change from load voltage occurs, and begins to float when a 100 mV
chance from the loaded VoH/VoLlevel occurs. loL/IoH = +20 mA.

Float Waveform

7-12 80C51BH/80C31BH/80C52T2/80C32T2

87C51/87C52T2

8-Bit CMOS Microcontrollers

PRELIMINARY

n

DISTINCTIVE CHARACTERISTICS

Software- and pin-compatible with 80C51
Beneficial for prototyping and initial production
All 80C51BH and 80C52T2 features retained
Flashrite™ EPROM programming

Two-level Program Memory Lock

32-Byte Encryption Array

In-Circuit Test Mode facilitates testing

RAM EPROM
(bytes) (bytes)
87C51 128 4K
87C52T2 256 8K

87C51 = User-programmable 80C51BH
87C52T2 = User-programmable 80C52T2

GENERAL DESCRIPTION

The 87C51 and 87C52T2 are CMOS EPROM versions of
the 80C51BH and 80C52T2, respectively. The 87C51
includes 4K bytes of on-chip EPROM, and the 87C52T2
includes 8K bytes of EPROM.

These user-programmable products are software- and pin-
compatible with their ROM-based counterparts. All of the
80C52BH and 80C52T2 features are retained. For more
information consult th
80C32T2 data sheet (or

Additionally, several new features are offered on the
EPROM versions. The 87C51 and 87C52T2 EPROM array
support the Flashrite programming algorithm that allows a
4K-byte EPROM array to be programmed in approximately
12 seconds. A two-level programmable lock structure
prevents externally fetched code from accessing internal
Program Memory and can disable EPROM verification and
programming. A 32-byte Encryption Array can be used to

ode th uring EPROM verification.

T ¥
. OSC‘L:A " «/%ing'res 128 svreg'}gﬂse BYTES Tm%”:"gg”
! TIMING COUNTERS
: 80C51
: CcPU <‘L
. PROGRAMMABLE .
: 64K=BYTE BUS SERIAL PORT .
: EXPANSION PROGRAMMABLE 10 « FULL DUPLEX :
: CONTROL UART .
: + SYNCHRONOUS .
. SHIFTER .
N INTERRUPTS @ .
INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL

ADDRESS DATA BUS IN out
AND /O PINS
BD007254
Publication # Rev. Amendment
09743 B /0 87C51/87C52T2
Issue Date: October 1989

7-13

CONNECTION DIAGRAMS

Top View
DIP
P1.0 1° ~ 4077 Vee
Pa[]2 39 [] Po.o AD
P2 13 38 [] Po.1 ADy P04
P3[4 a7 [] P02 AD;
P4 []s 36 [] P0.3 AD, P05
Pis 16 35 [] P04 AD, P0.6
P17 34 [] P05 ADg PO.7
P []s 33 [pos ADg _
RsT [9 32 [po7 aDy EA/Npp
RxD P30 [] 10 3 [EArvgp Vs
TXD P3.1 1" 3¢ ALE/PROG —
W, P32 E 12 2 % ey ALE/PROG
Wy P33 [] 13 28 7] P27 Ay PSEN
To P34 [14 27 [P26 Ay P2.7
T, Pas [26 [P25 Ay P26
Wh P3s [] 18 25 [] P24 Ay .
RO P37 [17 24 [] P23 Aqy P25
XTAL; 118 23 [] P22 Ay
XTALy [] 19 2] P21 Ay
Vss [20 211 P20 Ay
CD005553

CD010873

PLCC

$83idé

P14
P13
P12
P11
P10

P18] PO4
P1e[] Po.8
pr7] PO.6

RST [PO.7

P30 [EA/Vpp

~ne [Vss

P31 ALE/PROG
P32 [] PSEN

P33 [P2.7

P34] P2.6

P35 [] P25

pEdifsisddd
K
€D009442

Notes: Pin 1 is marked for orientation.
NC pins on the PLCC and LCC packages have been utilized as additional Vcc and Vgs connections
to improve noise immunity. It is recommended that these pins (1, 23, and 37) be connected
appropriately; however, they may be left floating to insure second source compatibility.

7-14

87C51/87C52T2

XTAL,

XTAL,

EA/Vpp
PSEN

ALE/PROG

™0
NT,
iNT,

|

HH
L]

Ty

EH

o]

HETH TR

LOGIC SYMBOL

v“l IVcc

l RST

1]

gl
e“g
—-— | O
gzg
:

2

=1
=11

LS001326

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is

formed by a combination of: a. Temperature

Range

b. Package Type

c. Device Number

d. Speed Option

e. Optional Processing

7C51

lo

|

[2]

a. TEMPERATURE RANGE

Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C)

Valid Combinations
87C51
D, R P, N 87C51-1
ID, IR, IP, IN 87C52T2
87C52T2-1

4

. OPTIONAL PROCESSING

Blank = Standard processing

. SPEED OPTION

Blank =35 to 12 MHz
-1=35 to 16 MHz

. DEVICE NUMBER/DESCRIPTION

87C51/87C52T2

8-Bit CMOS Microcontrollers
87C51 — 4K EPROM
87C52T2 — 8K EPROM

PACKAGE TYPE

D = 40-Pin Ceramic DIP (CDV040)

R = 44-Pin Ceramic Leadless Chip Carrier (CLV044)
P = 40-Pin Plastic DIP (PD 040)

N = 44-Pin Plastic Leadless Chip Carrier (PL 044)

Valid Combinations

Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid
combinations, to check on newly released combinations, and
to obtain additional data on AMD's standard military grade
products.

87C51/87C52T2

PIN DESCRIPTION

Port 0 (Bidirectional; Open Drain)
Port 0 is an open-drain |1/O port. Port 0 pins that have 1s
written to them float, and in that state can be used as high-
impedance inputs.

Port 0 is also the multiplexed low-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting 1s. Port 0 also outputs the code bytes during
program verification in the 87C51/87C52T2. External
pullups are required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have 1s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 1 pins that are externally being
pulled Low will source current (lj. on the data sheet)
because of the internal pullups.

Port 1 also receives the low-order address bytes during
program verification.

Port 2 (Bidirectional)
Port 2 is an 8-bit bidirectional I/Q port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having 1s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 2 pins externally being pulled Low
will source current (Ij) because of internal pullups.

Port 2 emits the high-order address byte during fetches from
external Program Memory and during accesses to external
Data Memory that use 16-bit addresses (MOVX @DPTR). In
this application it uses strong internal pullups when emitting
1s. During accesses to external Data Memory that use 8-bit
addresses (MOVX @Ri), Port 2 emits the contents of the P2
Special Function register.

Port 2 also receives the high-order address bits during the
programming of the EPROM and during program verification
of the EPROM, as well as some control signals.

Port 3 (Bidirectional)

Port 3 is an 8-bit bidirectional I/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins having 1s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 3 pins externally being pulled Low
will source current (lj) because of the pullups. Port 3 also
receives some control signals for EPROM programming and
program verification.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function
P3o RxD (Serial Input Port)
P3.1 TxD (Serial Output Port)
P3.2 INTo (External Interrupt 0)
P33 INT7 (External Interrupt 1)
P34 To (Timer 0 External Input)
P3s T1 (Timer 1 External Input)
P3s WR (External Data Memory Write Strobe)
P37 RD (External Data Memory Read Strobe)

RST Reset (Input; Active High)
This pin is used to reset the device when held High for two
machine cycles while the oscillator is running. A small
internal resistor permits power-on reset using only a
capacitor connected to Vcc.

ALE/PROG Address Latch Enable/Program Pulse
(Input/Output)
Address Latch Enable is the output pulse for latching the
low byte of the address during accesses to external
memory. ALE can drive eight LS TTL inputs.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory. This
pin also accepts the program pulse input (PROG) when
programming the EPROM.

PSEN Program Store Enable (Output; Active Low)
PSEN is the read strobe to external Program Memory. PSEN
can drive eight LS TTL inputs. When the device is executing
code from an external program memory, PSEN is activated
twice each machine cycle—except that two PSEN
activations are skipped during each access to external Data
Memory. PSEN is not activated during fetches from internal
Program Memory.

EA/Vpp

External Access Enable/Programming
Voltage (Input; Active Low)

EA must be externally held Low to enable the device to
fetch code from external Program Memory locations 0000H
to OFFFH. If EA is held High, the 87C51/87C52T2 executes
from internal Program Memory unless the program counter
contains an address greater than OFFFH.

This pin also receives the 12.75-V programming supply
voltage during programming of the EPROM.

XTALy Crystal (Input)
Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)
Output of the inverting-oscillator amplifier.

Vcc Power Supply
Power supply during normal, idle, and power-down
operations.

Vss Circuit Ground

7-16

87C51/87C52T2

PROGRAMMING

The 87C51/87C52T2 can be programmed with the Flashrite
algorithm. It differs from other methods in the value used for
Vpp (programming supply voltage) and in the width and
number of the ALE/PROG pulses.

TABLE 1. EPROM PROGRAMMING MODES FOR THE 87C51/87C52T2

To program the EPROM, either the internal or external
oscillator must be running between 4 and 6 MHz, since the
internal bus is used to transfer address and program data to
the appropriate internal registers. Table 1 shows the various
EPROM programming modes.

Mode RST PSEN ALE/PROG EA/Vpp P2.7 P2.6 P3.7 P3.6
Program Code H L L* Vpp H L H H
Verify Code H L H Vppx L L H H
Pgm Encryption Table H L L* Vpp H L H L
Pgm Lock Bit 1 H L L* Vpp H H H H
Pgm Lock Bit 2 H L L* Vpp H H L L
. Read Silicon Signature H L H H L L L L

Key: H = Logic High for that pin
L = Logic Low for that pin
Vpp =1275 V %0.25 V
Vcc =5 V £10% during programming and verification
2.0 V<Vppx<13.0 V

*ALE/PROG receives 25 programming pulses while Vpp is held at 12.75 V. Each programming pulse is low
for 100 us (+10% us) and high for a minimum of 10 us.

Programming

The programming configuration is shown in Figure 1. The
address of the EPROM location to be programmed is applied
to Ports 1 and 2 as shown in the figure. The programming
configuration of the 87C52T2 is identical except that P2.4 is
also used as an address input. The code byte to be pro-
grammed into that location is applied to Port 0. Once RST,
PSEN, Port 2, and Port 3 are held to the levels indicated in

Figure 1, ALE/PROG is pulsed low 25 times as shown in
Figure 2.

The maximum voltage applied to the EA/Vpp pin must not
exceed 13 V at any time as specified for Vpp. Even a slight
spike can cause permanent damage to the device. The Vpp
source should thus be well regulated and glitch-free.

When programming, a 0.1 uF capacitor is required across Vpp
and ground to suppress spurious transients which may dam-
age the device.

+5V

ADDR B P,
0000H-OFFFH
Ag- Pao-P23
Vin —-C: Pas 87Cs1

Paz

Ve Pas

VIH ——— Py
[X XTAL

4-6MHz] }

T_T AL,

Vss

——

|

Py K PGM DATA

ALE |€——— PROG (25, 100 us pulses to GND)

£ fe——Vep = 1275V

tRsT [+ Vi

PSEN

Figure 1. 87C51 Programming Configuration

TC004691

87C51/87C52T2

7-17

25 PULSES

ALE/PROG:

e

1AL

AL

100 ps
10 ps MIN:
e _.l 110 s

Program Verification

The 87C51/87C52T2 provides a method of reading the
programmed code bytes in the EPROM array for program
verification. This function is possible as long as Lock Bit 2 has
not been programmed.

For program verification, the address of the Program Memory
location to be read is applied to Ports 1 and 2 as shown in

WF025700

Figure 2. PROG Waveforms

Figure 3. Verification of the 87C52T2 is identical except that
P2.4 is also used as an address input. Once RST, PSEN, Port
2, and Port 3 are held to the levels indicated, the contents of
the addressed location will be emitted on Port 0. External
pullups are required on Port O for this operation. The EPROM
programming and verification waveforms provide further
details.

Pyo-P23

B
P37

v
L——¥Pr¢

ENABLE = Vy_— |

P2z
XTAL,
4-emHz [}
T_T XTAL,
Vss

87C51

READ

P DATA
0 (USE 10k
PULL-UPS)
ALEFROG [¢— Vi

EVpp [¢— YPPX
20V« VPPX <13.0V

RST [4—— Vi

PSEN

TC004672

Figure 3. 87C51 Program Verification

7-18 87C51/87C52T2

Program Encryption Table

The 87C51/87C52T2 features a 32-byte Encryption Array. It
can be programmed by the customer, thus encrypting the
program code bytes read during EPROM verification. The
EPROM verification procedure is performed as usual except
that each code byte comes out logically X-NORed with one of
the 32 key bytes.

The key byte used is the one whose address corresponds to
the lower 5 bits of the EPROM verification address. Thus,
when the EPROM s verified starting with address 0000H, all
32 keys in their correct sequence must be known. Unpro-
grammed bytes have the value FFH. Thus, if the Encryption
Table is left unprogrammed, no encryption will be performed,
since any byte X-NORed with FFH leaves that byte un-
changed.

To program the Encryption Table, programming is set up as
usual, except that P3.6 is held Low, as shown in Table 1. The
25-pulse programming sequence is applied to each address,
00 through 1FH. The programming of these bytes does not
affect the standard 4K-byte EPROM array. When the Encryp-
tion Table is programmed, the Program Verify operation will
produce only encrypted data.

The Encryption Table cannot be directly read. The program-
ming of Lock Bit 1 will disable further Encryption Table
programming.

Security Lock Bits

The 87C51 contains two Lock Bits which can be programmed
to obtain additional security features. P = Programmed and
U = Unprogrammed.

Lock Bit 1 Lock Bit 2 Result
V] Normal Operation
U « Externally fetched code cannot access internal Program Memory

+ All further Programming disabled (except Lock Bit 2)

Reserved

« Externally fetched code cannot access internal Program Memory
* All further Programming disabled
« Program Verification disabled

To program the Lock Bits, a 100 pulse programming sequence
is required using the levels shown in Table 1. After Lock Bit 1
is programmed, further programming of the Code Memory and
Encryption Table is disabled. However, Lock Bit 2 may still be
programmed, providing the highest level of security available
on the 87C51/87C52T2.

When Lock Bit 1 is programmed, the logic level at the EA pin is
sampled and latched during reset. If the device is powered up
without a reset, the latch initializes to a random value, and
holds that value until reset is activated. It is necessary that the
latched value of EA be in agreement with the current logic
level at that pin in order for the device to function properly.

Silicon Signature Verification

AMD supports silicon signature verification for the 87C51/
87C52T2. The manufacturer code and part code can be read
from the device before any programming is done to enable the
EPROM Programmer to recognize the device.

To read the silicon signature, the external pins are set up as
shown in Figure 4. This procedure is the same as a normal
verification except that P3.6 and P3.7 are pulled to a logic
Low. The values returned are:

Manufacturer Code | Address: 0030H Code: 01H
87C51 Part Code Address: 0031H Code: BOH
87C52T2 Part Code | Address: 0031H Code: 31H

Code 01H indicates AMD as the manufacturer. Code BOH
indicates the device type is the 87C51, and Code 31H
indicates a 87C52T2.

In-Circuit Test Mode

The In-Circuit Test Mode facilitates testing and debugging of
systems using the 87C51 without the 87C51 having to be
removed from the circuit. The In-Circuit Test Mode is invoked
by:

1. Pulling ALE Low while RST is held High, and PSEN is High.
2. Holding ALE Low as RST is de-activated.

While the device is in In-Circuit Test Mode, the Port 0 pins go
into a float state, and the other port pins and ALE and PSEN
are weakly pulled High. The oscillator circuit remains active.
While the 87C51 is in this mode, an emulator or test CPU can
be used to drive the circuit. Normal operation is restored when
a Hardware Reset is applied.

Erasure Characteristics

Light and other forms of electromagnetic radiation can lead to
erasure of the EPROM when exposed for extended periods of
time.

Wavelengths of light shorter than 4000 angstroms, such as
sunlight or indoor fluorescent lighting, can ultimately cause
inadvertent erasure and should, therefore, not be allowed to
expose the EPROM for lengthy durations (approximately one
week in sunlight or three years in room-level fluorescent
lighting). It is suggested that the window be covered with an
opaque label if an application is likely to subject the device to
this type of radiation.

Itis recommended that ultraviolet light (of 2537 angstroms) be
used to a dose of at least 15 W-sec/cm“ when erasing the
EPROM. An ultraviolet lamp rated at 12,000 uW/cm2 held one
inch away for 20-30 minutes should be sufficient.

EPROM erasure leaves the Program Memory in an "'all ones"'
state.

87C51/87C52T2

7-19

v,
cc
ADDR z P
a7 1 READ
000OH-0001H P DATA
° (USE 10 kQ
Ag-A Poo-Pa3 PULL-UPS)
Vi Pas 87C51
P JE
Vi —» a7 ALE/PROG [¢—— ViH
ViL —»f P2
ENABLE =V, —]
L Pyy
XTAL, EANpp [¢—— Vppx
20V <V, <130V
4-6MHz [] } PPX
T XTAL4 RST [€—— Vi
Vss PSEN | (Address 0030) = Manufacture Code
=01H = AMD
(Address 0031) = Part Code
1 = BOH = 87C51
TC004683
Figure 4. 87C51 Silicon Signature Verification Configuration
Oscillator Characteristics To drive the device from an external clock source, XTAL4
should be driven while XTAL; is left unconnected (see Figure
XTAL4 and XTAL are the input and output, respectively, of an 6). There are no requirements on the duty cycle of the external
inverting amplifier which is configured for use as an on-chip clock signal since the input to the internal clocking circuitry is
oscillator (see Figure 5). Either a quartz crystal or ceramic through a divide-by-two fhp_-flop, but minimum and maximum
resonator may be used. High and Low times specified on the data sheet must be

observed.

T U
=i
L

Vss

TC004710
Figure 5. Crystal Oscillator

NC | xraL,
EXTERNAL

OSCILLATOR XTAL 4
SIGNAL

Vss
TC004700

Figure 6. External Drive Configuration

7-20 87C51/87C52T2

ABSOLUTE MAXIMUM RATINGS

..—-65 to +150°C

Storage Temperature .
-0.5to +130 V

Voltage on EA/Vpp Pin to Vgg

Voltage on Vce to Vss .. .-051t0 +65 V
Voltage on Any Other Pin to Vss -05to +65V
Power Dissipationc.oooiiiiiiiii 200 mW

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device

OPERATING

Commercial (C) Devices

RANGES

Ambient Temperature (TA)coovvivieiinnnens 0 to +70°C

Supply Voltage (Vco) .+45to +55 V

Ground (VES) .- vucuinininiiiiii it eeeeeaeeeanes ov
Industrial (1) Devices

Ambient Temperature (Ta) . -40 to +85°C

Supply Voltage (Vco) ... +45 to +55 V

Ground (VSS) .. vuvneniiiieiiiiiiei e eneanes ov

reliability.

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges

Parameter
Symbol Parameter Description Test Conditions Min. Max. Unit
ViL Input Low Voltage (Except EA) -0.5 0.2 Vgc-0.1 v
ViLt Input Low Voltage (EA) 0 0.2 Voo -0.3 v
ViH input High Voltage (Except XTAL, RST) | | Vcé’f 09| Veoc+os v
ViH1 Input High Voltage to XTAL{, RST 1 07 vee Veg + 0.5 v
VoL Output Low Voltage (Ports 1, 2, 3) 0.45 Vv
Vo1 Output Low Voltage (Port 0, ALE, PSEN) 0.45 v
. 24
VoH Output High Voltage (Ports 1, 2, 3), ALE, v
il b 0.9 Vco
il 10K = -800 wA, 24
VoH1 Vec=5V £10% v
loH=-80 pA (Note 2)

i, ViN=045 V -50 HA
L (Note 3) -650 A
ILi VIN=ViL or VIH 10 HA

pov M N Note 4 mA
lcc |d<|:§vM6d:de@ @121nanzH(ch(n: e (Note 5) Note 4

Power-Down Mode 50 HA
RRST Reset Pulldown Resistor 50 300 k2
Cio Pin Capacitance ;:ﬂ freg=1 MHz, 10 pF
Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vo s of ALE and Ports 1 and 3. The noise

is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations.
In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to
qualify ALE with a Schmitt Trigger, or use an address latch with a_Schmitt Trigger STROBE input.

2. Capacitive ioading on Ports 0 and 2 may cause the Vou on ALE and PSEN to momentarily faii beiow the 0.9 Vg specification when the
address bits are stabilizing.
3. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its
maximum value when VN is approximately 2 V.
4. lccmax at other frequencies is given by:
Active Mode: Icc TYPICAL = 0.94 x Freq + 13.71 Icc MAX = 1.38 x Freq + 20.4
Idle Mode: icc TYPICAL = 0.38 x Freq + 5.4 Icc MAX =0.38 x Freq + 11.9
where Freq is the external oscillator frequency in MHz. Iccmax is given in mA (see Figure 5).
5.

. Active Mode Icc is measured with all output pins disconnected; XTALy driven with TCLCH, TCHCL=5 ns, V) =Vgg+05 V,

ViH=Vcc-0.5 V; XTALz N.C; EA=RST =Port 0 = Vcc

\dle Mode Icc is measured wnth all output pins dnsconnecxed; XTAL4y driven with TCLCH, TCHCL=5 ns, V)L =Vgg+05 V,
ViH=Vgc-05 V; XTALz =N.C,; Port 0 =Vcc; EA =RST = Vss.

Power-Down Mode Icc is measured with all output pins disconnected; EA = Port 0 = Vog; XTALp NC; RST = Vgg.

87C51/87C52T2

7-21

SWITCHING CHARACTERISTICS over operating ranges
(Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)
16 MHz Osc. 12 MHz Osc. Variable Osclllator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Min. Max. Unit
1/TCLCL Oscillator Frequency 16 MHz
TLHLL ALE Pulse Width 85 127 ns
TAVLL Address Valid to ALE Low * 7 28 ns
TLLAX Address Hold After ALE Low 27 48 ns
TLLIV ALE Low to Valid Instr. In 150 4TCLCL-100 ns
TLLPL ALE Low to PSEN Low 22 43 ;7 ns
TPLPH PSEN Pulse Width 142 R05 - ns
TPLIV Low to Valid Instr. In K i, W45 3TCLCL-105 ns
TPXIX Input Instr. Hold After PSEN 0 b [0, 0 O 0 ns
TPXIZ Input Instr. Float After PSEN.] i 59 TCLCL-25 ns
TAVIV Address to Valid Instr. In o Wl 1 312 5TCLCL-105 ns
TPLAZ "PSEN Low to Address Float T, T ', [0 10 10 ns
TRLAH AD Pulse Width \ 750 400 6TCLCL-100 ns
TWLWH WH Pulse Width 5 400 6TCLCL-100 ns
TRLDV AD Low to Valid Data, Ing,)) 148 252 5TCLCL-165 ns
TRHDX Data Hold Aft i 0 0 0 ns
TRHDZ Data Float Aftel i T 55 97 2TCLCL-70 ns
TLLDV ALE Low to Vali ta In 350 517 8TCLCL-150 ns
TAVDV Address to Valid Dat@ In 398 585 9TCLCL-165 ns
TLLWL ALE Low to RD or WH Low 137 238 200 300 3TCLCL-50 3TCLCL+ 50 ns
TAVWL Address Valid to RD or WH Low 120 203 4TCLCL-130 ns
TQVWX Data Valid to WR Transition 2 23 TCLCL-60 ns
TQVWH Data Vaiid to WR High 287 433 7TCLCL-150 ns
TWHQX Data Hold After 12 33 TCLCL-50 ns
TRLAZ TD Low to Address Float 0 0 0 ns
TWHLH FD or WR High to ALE High 22 103 43 123 TCLCL-40 TCLCL+ 40 ns
SWITCHING WAVEFORMS
KEY TO SWITCHING WAVEFORMS
WAVEFORM INPUTS OUTPUTS
Stenor STeaoy
WILL BE
m FRoMHTOL ~CHANGING
wiLL
ST sseenss Bk
M DON'T CARE; CHANGING:
ANY CHANGE STATE
PERMITTED UNKNOWN
CENTER
M 22:5}&07 :.INE 1S HIGH
"QFF" STATE
KS000010
7-22 87C51/87C52T2

SWITCHING WAVEFORMS

~—TLHLL—]

ALE \ / \

|
~TAVLL TPLPH
TLLPL

TLLV
\ TPLIV
PSEN
TPXIZ

TLLAX [+——={ =—TPLAZ TPXIX —=

f

s
PORTO >—< ADg-AD7 INSTR ADg-AD7
N\ -

TAVIV

4
PORT 2) Ag-At5 X Ag-Ass
N

External Program Memory Read Cycle

~

WF021962

TWHLH |o——e|

ALE / \
PSEN /

TLLDV

~—TLLWL — TRLRH
=l \ /

~——— TRLDV ——

TAVLL- TRHDZ

> TLLAX= —-| |=TRLAZ TRHDX—~

—
—
{ ADg-AD7 4 \ ADg-AD
y 0-AD7 INSTR
{FROM RI OR DPL ' | DATAN FROM PCL N

TAVWL

PORTO

e

ADo-AD7
TAVDV

PORT2 P20-P2.7 OR Ag-A5 FROM DPH X‘ Ag-A5 FROM PCH

WF020962

External Data Memory Read Cycle

87C51/87C52T2

7-23

SWITCHING WAVEFORMS (continued)

TWHLH |~—|

ALE _/_—\ /
_/

PSEN \
—TLLWL TWLWH
WR /
TQVWX
TWHQX
TAVLL TLLAX | TQVWH .L!
ADg-AD ADg—-AD INSTR
PORT 0 FROM Rl OR DPL DATA ouUT X XFRgM L .
TAVWL ——
PORT 2 >< P20-P27 OR Ag-Ay5 FROM DPH X Ag-Ars FROM PCH
WF020932
External Data Memory Write Cycle
wmstRucton | o} ot] 2 | s | & | 5 | e I T |
fo=TxLxL->]
TQVXH || Ja-TxHOX |
OUTRUT DATA o X + X 2 X 3 X _+ X 5 X ¢ X 7 /
e l | K
n
WRITE TO SBUF TxHDVl‘_" *l o= Txr0x
INPUT DATA QuacoX__XvaoX__ XvauoX _ XvauoX_ XvauoX_ XvauoX XvauoX XVALD)
SET N
CLEAR RI
WF020951

Shift Register Timing Waveforms

7-24

87C51/87C52T2

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Unit
1/TCLCL MHz
TCHCX ns
TCLCX ns
TCLCH Rise Time ns
TCHCL Fall Time ns
/A NI -
045V 02Veg-01 ~ X
TCLCX — =g , TCLCH
TCHCL TCLCL {
WF020910
External Clock Drive Waveform
SERIAL PORT TIMING — SHIFT REGISTER MODE
(Test Conditions: TaA =0 to +70°C; Vcc=5 V *10%; Vgs =0 V; Load Capacitance = 80 pF)
16 MHz
Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. | Max. Min. Max. Unit
TXLXL @é E - a Lﬁ)M —
TQVXH 492 JCLCL-133 ns
TXHQX L ns
TXHDX Input Data Hold After Clock Rising Edge o ns
TXHDV Clock Rising Edge to Input Data Valid 492 10TCLCL-133 ns
AC Testing
Vce -0
cc-058 02 VoG +08 Vop=01 V
045 v 0.2 Vgc 0.1 VoL+0.1 V
WF020901 WF020941

AC inputs during testing are driven at Vcc~0.5 for a logic 1 and 0.45 V for
a logic 0. Timing measurements are made at V)4 min. for a logic 1 and V.
max. for a logic 0.

Input/Output Waveform

For timing purposes a port pin is no longer floating when a 100 mV change
from load voltage occurs, and begins to float when a 100 mV change from
the loaded Von/VoLlevel occurs. lop/loH = $20 mA.

Float Waveform

87C51/87C52T2

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA=+21 to +27°C)

For Programming conditions, see Figures 1 and 2.
For Verification conditions, see Figure 3.

Parameter Parameter

Symbol Description Max. Unit
Vpp Programming Supply Voltage 13.0 v
Ipp Programming Supply Current 50 mA
1/TCLCL Oscillator Frequency 6 MHz
TAVGL Address Setup to PROG ¥ 48TCLCL
TGHAX Address Hold After 48TCLCL
TDVGL Data Setup to PROG 48TCLCL
TGHDX 48TCLCL
TEHSH 48TCLCL
TSHGL etup 10 us
TGHSL sp Hold after PROG 10 us
TGLGH Width 90 110 us
TAVQV Address to Data Valid 48TCLCL
TELQV ENABLE to Data Valid 48TCLCL
TEHQZ Data Float After ENABLE 0 48TCLCL
TGHGL PROG High to PROG Low 10 us

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS
PROGRAMMING VERIFICATION
oo h s —4 ADDRESS) 4 ADDRESS >—-
— [e—TAVQV
PORT 0 { oaTan { oataouT —
TOVGL 14— | — |e4—TGHDX
TAVGL 25 PULSES TGHAX
ALE/PROG \ - /
TSHGL F—TGHGL
— TGLGH ‘—‘lTGHSL
EAVpp
/ LOGIC 1 LOGIC 1
I LOGIC 0 e
—01 le— TEHSH TELQV le— [+ TEHQZ
Bz __/|
WF025693

7-26

87C51/87C52T2

CHAPTER 7
80C51 Family

Designing with the 80C51BH

CMOS EVOLVES

The original CMOS logic families were the 4000-series
and the 74C-series circuits. The 74C-series circuits are
functional equivalents to the correspondingly numbered
74-series TTL circuits, but have CMOS logic levels and
retain the other well-known characteristics of CMOS
logic.

These characteristics are: low power consumption, high
noise immunity, and slow speed. The low power con-
sumption is inherent to the nature of the CMOS circuit.
The noise immunity is due partly to the CMOS logic
levels, and partly to the slowness of the circuits. The slow
speed was due to the technology used to construct the
transistors in the circuit.

Thistechnology is called metal-gate CMOS, because the
transistor gates are formed by metal deposition. More
importantly, the gates are formed after the drain and
source regions have been defi

ances. This overlap plu
transistors result in high.

High-speed CMOS became f
ment of the self-aligning silicon-gate technology. In this
process, polysilicon gates are deposited before the
source and drain regions are defined. Then the source
and drain regions are formed by ion implantation using
the gate itself as a mask for the implantation. This elimi-
nates most of the overlap capacitance. In addition, the
process allows smaller transistors, resulting in a signifi-
cant increase in circuit speed. The 74HC-series of
CMOS logic circuits is based on this technology, and has
speed comparable to LS TTL, which is to say about 10
times faster than the 74C-series circuits.

The size reduction that contributes to the higher speed
also demands an accompanying reduction in the maxi-
mum supply voltage. High-speed CMOS is generally lim-
itedto6 V.

WHAT IS CMOS?

There are two CMOS processes, one based on an n-well
structure and one based on a p-well structure. In the
n-well structure, n-type wells are diffused into a p-type
substrate. Then the n-channel transistors (NFETs) are
built into the substrate and pFETs are built into the
n-wells. In the p-well structure, p-type wells are diffused
into an n-type substrate. Then the nFETSs are built into
the wells and pFETSs into the substrate. Both processes
have advantages and disadvantages, which are largely
unseen by the user.

Lower operating voltages are easier to obtain with the
p-well structure than with the n-well structure. But the
p-well structure does not easily adapt to an EPROM
which would be pin-for-pin compatible with NMOS
EPROMs. On the other hand the n-well structure can be
based on the solidly founded NMOS process, in which
nFETs are built into a p-type substrate. This allows
somewhat more than half of the transistors in a CMOS
chip to be constructed by processes that are already well
characterized.

THE 8051 FAMILY IN CMOS

The 80C51BH is the CMOS version of the original 8051.
The 80C31BH is the ROMless 80C51BH, equivalent to
the 8031. These CMOS devices are architecturally iden-
tical with their NMOS counterparts, exceptthat they have
two added features for reduced power: Idle and Power-
Down modes of operation,

& g can directly replace the
f%@% :It can execute the same
ept signals from the same
e loads. However, the
ge of speeds, will emit

. CMOSﬂ'fogré*levels to CMOS loads, and will draw about

1/10 the current of an 8051 (and less in the reduced
power modes). Interchangeability between the NMOS
and CMOS devices is discussed in more detail in the final
section.

It should be noted that the 80C51BH CPU is not static.
That means if the clock frequency is too low, the CPU
might forget what it was doing. This is because the cir-
cuitry uses a number of dynamic nodes. A dynamic node
is one that uses the node-to-ground capacitance to form
a temporary storage cell. Dynamic nodes are used to
reduce the transistor count, and hence the chip area to
produce a more economical device.

This is not to say that the on-chip RAM in CMOS
microcontrollers is dynamic. It's not. It is the CPU that is
dynamic, and that is what imposes the minimum clock
frequency specification.

LATCHUP

Latchup is an SCR-type turn-on phenomenon that is the
traditional nemesis of CMOS systems. The substrate,
the wells, and the transistors form parasitic pnpn struc-
tures within the device. These parasitic structures turn
onlike an SCR if a sufficient amount of forward current is
driven through one of the junctions. From the circuit de-
signer’s point of view, it can happenwhenever aninput or
output pin is externally driven a diode drop above Vcc or

7-27

CHAPTER 7
80C51 Family

below Vss by a source that is capable of supplying the
required trigger current.

However much of a problem latchup has been in the
past, it is good to know that in most recently developed
CMOS devices, the current required to trigger latchup is
typically well over 100 mA. The 80C51BH is virtually
immune to latchup. (References 1 and 2 present a dis-
cussion of the latchup mechanisms and the steps that
are taken on the chip to guard against it.) Modern CMOS
is not immune to latchup, but with trigger currents in the
hundreds of mA, latchup is certainly a lot easier to avoid
than it once was.

A careless power-up sequence might trigger latchup in
the older CMOS families, but it’s unlikely to be a major
problem in high-speed CMOS. There is still some risk
incurred in inserting or removing chips or boards in a
CMOS system while the power is on. Also, severe tran-
sients, such as inductive kicks or momentary short cir-
cuits, can exceed the trigger current for latchup.

For applications in which some latchup risk seems un-
avoidable, put a small resistor (100 ohms or so) in series
with the signal lines to ensure that the trigger current will
never be reached. This also helps to control overshoot
and RFI.

LOGIC LEVELS AND INTERFACING
PROBLEMS

CMOS logic levels differ from TTL levels in two ways.
First, for equal supply voltages, CMOS gives (and re-
quires) a higher “logic 1" level than TTL. Secondly,
CMOS logic levels are Vcc (or Voo) dependent, whereas
guaranteed TTL logic levels are fixed when Vcc is within
TTL specs.

Standard 74HC logic levels are as follows:
ViHmin = 70% of Vcc
Viemax = 20% of Vcc
Voumin = Vee — 0.1 V, |lon| <20 pA
VoL max = 0.1V, [loL| < 20 pA

Table 7-1 compares 74HC, LS TTL, and 74HCT logic
levels with those of the NMOS 8051 and CMOS
80C51BH for Vec =5 V.

Output logic levels depend of course onload current, and
are normally specified at several load currents. When
CMOS and TTL are powered by the same Vcc, the logic
levels guaranteed on the data sheets indicate that
CMOS candrive TTL, but TTL cannot drive CMOS. The
incompatibility is that the TTL circuit’s Vou level is too
low to reliably be recognized by the CMOS circuit as a
valid Vii. Since NMOS circuits were designed to be TTL-
compatible, they have the same incompatibility.

Fortunately, 74HCT-series circuits are available to ease
these interfacing problems. They have TTL-compatible
logic levels at the inputs and standard CMOS levels at
the outputs.

The 80C51BH is designed to work with either TTL or
CMOS. Therefore, its logic levels are specified very
much like 74HCT circuits. That is, its input logic levels
are TTL-compatible, and its output characteristics are
like standard high-speed CMOS.

NOISE CONSIDERATIONS

One of the major reasons for going to CMOS has tradi-
tionally been that CMOS is less susceptible to noise than
TTL. As previously noted, its low susceptibility to noise is
partly due to superior noise margins, and partly due to its
slow speed.

Noise margin is the difference between VoL and Vi, or
between Von and V. If Vo from a driving circuitis 2.7 V
and Viuto the driven circuitis 2.0 V, then the driven circuit
has 0.7 V of noise margin at the logic high level. These
kinds of comparisons show that an all-CMOS system has
wider noise margins than an all-TTL system. Table 7-2
shows noise margins in CMOS and LS TTL systems
when both have Vce = 5 V; CMOS/CMOS systems have
an edge over LS TTL in this respect.

Table 7-1. Logic Level Comparison (output levels are for minimum loading)

Vee =5V
Logic State 74HC 74HCT LSTTL 8051 80C51BH
Vi 35V 20V 20V 20V 1.9V
Vi 1oV 0.8V 08V 08V 09V
Vou 49V 49V 27V 24V 45V
Voo 01V 01V 05V 0.45V 045V

7-28

CHAPTER 7
80C51 Family

Noise margins can be misleading, however, because
they do not say how much noise energy in the circuit it
takes to induce a noise voltage of sufficient amplitude to
cause a logic error. This involves consideration of the
width of the noise pulse as compared with the circuit
response speed, and the impedance to ground from the
point of noise introduction in the circuit.

Table 7-2. Noise Margins for CMOS and

LS TTL Circuits

Noise Margins for V. =5V

Logic Low Logic High
Interface ViVou Vor=Viu
74HC to 74HC 09V 1.4V
LSTTLto LSTTL 03V 0.7V
LSTTL to 74HCT 03V 0.7V
LSTTL to 80C51BH 0.3V 0.7V
74HC to 80C51BH 08V 3.0V
80C51BH to 74HC 0.8V 1.0V

When these considerations are included, it is seen that
using the slower 74C- and 4000-series circuits with a 12-
or 15-V supply voltage does offer a truly improved level
of noise immunity, but that high-speed CMOS at 5 V is
not significantly better than TTL.

One should not mistake the wider supply voltage toler-
ance of high-speed CMOS for Vec glitch immunity. Sup-
ply voltage tolerance is a DC rating, not a glitch rating.

For any clocked CMOS, and most especially for VLSI
CMOS, Vce decoupling is critical. CMOS draws current
in extremely sharp spikes at the clock edges. The VHF
and UHF components of these spikes are notdrawn from
the power supply, but from the decoupling capacitor. If
the decoupling circuit is not sufficiently low in inductance,
Vcewill glitch at each clock edge. A0.1-uF decoupler cap
should be used in a minimum-inductance configuration
withthe microcontroller. A minimum-inductance configu-
ration minimizes the area of the loop formed by the chip
(Vee to Vss), the traces to the decoupler cap, and the
decoupler cap. PCB designers too often fail to under-
stand that if the traces that connect the decoupler cap to
the Vec and Vss pins are not short and direct, the
decoupler loses much of its effectiveness.

Overshoot and ringing in signal lines are potential
sources of logic upsets. These can largely be controlied
by circuit layout. Inserting small resistors (about 100
ohms) in series with signal lines that seem to need them
will also help.

The sharp edges produced by high-speed CMOS can
cause RFI problems. The severity of these problems is
largely a function of the PCB layout. All RFI problems are
not necessarily solved by a better PCB layout. It may well
be, for example, that in some RFl-sensitive designs,

high-speed CMOS is simply not the answer. But circuit
layout is a critical factor in the noise performance of any
electronic system, and more so in high-speed CMOS
systems than others.

Circuit layout techniques for minimizing noise suscepti-
bility and generation are discussed in References 3
and 4.

UNUSED PINS

CMOS input pins should not be left to float, but should
always be pulled to one logic level or the other. If they
float, they tend to float into the transition region between
0and 1, where pull-up and pull-down devices in the input
buffer are both conductive. This causes a significant in-
crease in lcc. A similar effect exists in NMOS circuits, but
with less noticeable results.

In 80C51BH and 80C31BH designs, unused pins of
Ports 1, 2, and 3 can be ignored, because they have
internal pull-ups that will hold them at a valid logic-1 level.
Port 0 pins are different, however; they do not have inter-
nal pull-ups (except during bus operations).

When the 80C51BH is in reset, the Port 0 pins are in a
float state unless they are externally pulled up or down. If
the device is to be held in reset for just a short time, the
transient float state can probably be ignored. When the
device comes out of reset, the pins stay afloat unless
they are externally pulled either up or down. Alterna-
tively, the software can internally write Os to whatever
Port 0 pins may be unused.

The same considerations are applicable to the 80C31BH
when it is in reset. But when the 80C31BH comes out of
reset, it commences bus operations, during which the
logic levels at all pins are always well defined as high or
0w,

When the 80C31BH is in the Power-Down and Idle
modes, however, it is not fetching instructions, and the
Port 0 pins will float if not externally pulled high or low.
The choice of whether to pull them high or low is the
designer’s. Normally it is sufficient to pull themup to Vce
with 10K resistors. But if power is going to be removed
from circuits that are connected to the bus, it will be
advisable to pull the bus pins down (normally with 10K
resistors). Considerations involved in selecting pull-up
and pull-down resistor values are as follows.

PULL-UP RESISTORS

If a pull-up resistor is to be used on a Port 0 pin, its
minimum value is determined by lo. requirements. If the
pinis trying to emit a 0, then it will have to sink the current
from the pull-up resistor plus whatever other current may
be sourced by other loads connected to the pin, as
shown in Figure 7-1a, while maintaining a valid output
low (Vo).

7-29

CHAPTER 7
80C51 Family

80C51BH

Vee
R
IOL Il L
. ¢ External

Po.X Loads

V.
lov= __sg_ + I

a. Minimum Value (P0.X is emitting a logic low)

80C51BH

R
Iy hw

—% External

Po.X Loads

Von=Vec=(lu+lu)- R

b. Maximum Value (P0.X is in a high impedance state)

Figure 7-1. Conditions Defining Values of Pull-Up Resistor R

80C51BH

PO.X ° External

Loads

V,
low = '_'é‘ﬂ" + I

a. Minimum Value (P0.X Is emittingatina
bus operation)

80C51BH

External
Loads

P0.X 6

VOL = ('Ll + IIL) ‘R

b. Maximum Value (P0.X is in a high impedance state)

Figure 7-2. Conditions Defining Values of Pull-Down Resistor R

To guarantee that the pin voltage will not exceed 0.45V,
the resistor should be selected so that lo. does not
exceed the value specified on the data sheet. in most
CMOS applications, the minimum value would be
about 2K.

The maximum value would depend on how fast the pin
must pull up after bus operations have ceased, and how
high the Von level must be. The smaller the resistor, the
faster it pulls up. Its effect on the Von level is that Vo =
Vce —(lu + Im) - R. luis the input leakage current to the
Port 0 pin, and Iis the input high current to the external
loads, as shown in Figure 7-1b. Normally Vou can be
expected to reach 0.9 Vce if the pull-up resistance does
not exceed about 50K.

PULL-DOWN RESISTORS

If a pull-down resistor is to be used on a Port 0 pin, its
minimum value is determined by Vow requirements dur-

ing bus operations, and its maximum value is, in most
cases, determined by leakage current.

During bus operations, the port uses internal puli-ups to
emit 1s. The DC Characteristics in the data sheet list
guaranteed Vou levels for given lox currents. (The "
sign in the lox value means the pin is sourcing that cur-
rent to the external load, as shown in Figure 7-2.) To
ensure the Von level listed in the data sheet, the resistor
has to satisfy

Vou + 1l < [lonl

where i is the input high current to the external loads.

When the pin goes into a high-impedance state, the pull-
down resistor will have to sink leakage current from the
pin, plus whatever other current may be sourced by other
loads connected to the pin, as shown in Figure 7-2b. The

7-30

CHAPTER 7
80C51 Family

Port 0 leakage current is I on the data sheet. The resis-
tor should be selected so that the voltage developed
across it by these currents will be seen as a logic low by
whatever circuits are connected to it (inciuding the
80C51BH). In CMOS/CMOS applications, 50K is nor-
mally a reasonable maximum value.

DRIVE CAPABILITY OF THE INTERNAL
PULL-UPS

There is an important difference between NMOS and
CMOS port drivers. The pins of Ports 1, 2, and 3 of the
CMOS parts each have three pull-ups: strong, normal,
and weak, as shown in Figure 7-3. The strong pull-up
(P1) is only used during 0-to-1 transitions, to hasten the
transition. The weak pull-up (P2) is on whenever the bit
latch contains a 1. The “normal” pull-up (P3) is controlied
by the pin voltage itself.

The reason that P3 is controlled by the pin voltage is that
if the pin is being used as an input, and the external
source pulls it to a low, then turning off P3 makes for a
lower . The data sheet shows an “Ir.” specification. This
is the current that P3 will source during the time the pin
voltage is making its 1-to-0 transition. This is what I
would be if an input low at the pin did not turn P3 off.

Note, however, that this P3 turn-off mechanism puts a
restriction on the drive capacity of the pin if it's being
used as an output. If you're trying to output a logic high,
and the externalload pulls the pin voltage below the pin’'s
Vi min spec, P3 might turn off, leaving only the weak
P2 to provide drive to the load. To prevent this from
happening, you need to ensure that the load does not
draw more than the lon spec for a valid Vox. The ideais to
make sure the pin voltage never falls below its own Vi
min specification.

POWER CONSUMPTION

The main reason for going to CMOS, of course, is to
conserve power. There are other reasons, but this is the
main one. Conserving power does not mean just reduc-
ing the electric bill; nor does it necessarily relate to
battery operation, although battery operation without
CMOS is pretty unhandy. The main reason for conserv-
ing power is to be able to put more functionality into a
smaller space. Reduced power consumption allows the
use of smaller and lighter power supplies. With less heat
generated, denser packaging of circuit components is
possible, and expensive fans and blowers can usually be
eliminated. A cooler running chip is also more reliabie,
since most random and wearout failures relate to die

QZ Osc. Periods

Vee Vee Vee

L__m _' P2 —| P3

\ \ o\
Y & 3 ¢ ron
4 4 Pin
n
o |
Ao ¢ g —
From Port
Latch
Input
Data G °<
Read
Port
Pin

Figure 7-3. 80C51BH Output Drivers for Ports 1,2, and 3

7-31

CHAPTER 7
80C51 Family

temperature. And finally, the lower power dissipation al-
lows more functions to be integrated onto the chip.

CMOS consumes less powerthan NMOS because when
CMOS is in a stable state, there is no path of conduction
from Vcc to Vss except through various leakage paths.
CMOS does draw current when it is changing states.
How much current is drawn depends on how often and
how quickly CMOS changes states.

During logical transitions, CMOS circuits draw current in
sharp spikes that are made up of two components. One
is the current that flows during the transition time when
puli-up and pull-down FETSs are both active. The average
(DC) value of this component is larger when the transi-
tion times of the input signals are longer. For this reason,
if the current draw is a critical factor in the design, slow
rise and fall times should be avoided, even when the
system speed does not seem to justify a need for
nanosecond switching speeds.

The other component is the current that charges stray
and load capacitance at the nodes of a CMOS logic gate.
The average value of this current spike is its area (inte-
gral over time) multiplied by its repetition rate. Its area is
the amount of charge it takes to raise the node capaci-
tance, C, to Vcc. That amount of charge is just C - Vcc. So
the average value of the current spike is C- Vcc - f, where
f is the clock frequency. This component of current in-
creases linearly with clock frequency.

Keep in mind, though, that the other component of cur-
rent is due to slow rise and fall times. A sinusoid is not the
optimal waveform with which to drive the XTAL1 pin. Yet
crystal oscillators, including the one on the 80C51BH,
generate sinusoidal waveforms. Therefore, if the on-chip
oscillatoris being used, the device will draw more current
at 500 kHz than it does at 1.5 MHz, as shown in Figure
7-4. If a good sharp square wave is derived from an
external oscillator and is used to drive XTAL1, the micro-
controller will draw less current. But the external oscilla-
tor will probably make up the difference.

The 80C51BH has two power-saving features not avail-
able in the NMOS devices: Idle and Power-Down modes
of operation. The on-chip hardware that implements

Sinusoidal Clock Signal

ICC

A4S

Rectangular Clock Signal

~1.5 MHz Clock Frequency

Figure 7-4. 80C51BH ICC versus Clock Frequency

these reduced power modes is shown in Figure 7-5. Both
modes are invoked by software.

Idle: In the Idle Mode (IDL = 0 in Figure 7-5), the CPU
puts itself to sleep by gating off its own clock. It does not
stop the oscillator; it just stops the internal clock signal
from getting to the CPU. Since the CPU draws 80 to 90
percent of the chip’s power, shutting it off represents a
fairly significant power savings. The on-chip peripherals
(timers, serial port, interrupts, etc.) and RAM continue to
function as normal. The CPU status is preserved in its
entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, and all other registers main-
tain their data during Idle.

The Idle Mode is invoked by setting bit 0 (IDL) of the
PCON register. PCON is not bit-addressable, so the bit
has to be set by a byte operation, such as

ORL PCON,#1

The PCON register also contains flag bits GF0 and GF1,
which can be used for any general purposes, or to give
an indication if an interrupt occurred during normal op-
eration or during Idle. In this application, the instruction
that invokes Idle also sets one or both of the flag bits.
Their status can then be checked in the interrupt
routines.

XTAL2 —
IDL
CPU
OSC
XTAL1 D mill Clock Interrupt
Gen. e Serial Port
Timer/Counters
PD

Figure 7-5. Oscillator and Clock Circuitry Showing Idle and Power-Down Hardware

7-32

CHAPTER 7
80C51 Family

While the device is in the Idle mode, ALE and PSEN emit
logic high (Vow), as shown in Table 7-3. This is so exter-
nal EPROM can be deselected and have its output
disabled.

The port pins hold the logical states they had at the time
the Idle was activated. If the device was executing out of
external program memory, Port 0 is left in a high imped-
ance state and Port 2 continues to emit the high byte of
the program counter (using the strong pull-ups to emit
1s). If the device was executing out of internal program
memory, Ports 0 and 2 continue to emitwhateveris inthe
PO and P2 registers.

There are two ways to terminate ldle. Activation of any
enabled interrupt will cause the hardware to clear bit 0 of
the PCON register, terminating the Idle mode. The inter-
rupt will be serviced, and following RET! the next instruc-
tion to be executed will be the one following the instruc-
tion that invoked Idle.

The other way is with a hardware reset. Since the clock
oscillator is still running, RST only needs to be held ac-
tive for two machine cycles (24 oscillator periods) to
complete the reset. Note that this exit from Idle writes 1s
to all the ports, initializes all SFRs to their reset values,
and restarts program execution from location 0.

Power Down: In the Power-Down mode (PD = 0 in Fig-
ure 7-5), the CPU puts the whole chip to sleep by turning
off the oscillator. In case it was running from an external
oscillator, it also gates off the path to the internal phase
generators, so no internal clock is generated even if the
externaloscillator is still running. The on-chip RAM, how-
ever, saves its data, as long as Vcc is maintained. In this
mode, the only lec that flows is leakage, which is normally
in the micro-amp range.

The Power-Down mode is invoked by setting bit 1 in the
PCON register, using a byte instruction such as

ORL PCON,#2

While the device is in Power Down, ALE and PSEN emit
lows (Vor), as shown in Table 7-3. ALE and PSEN are
designed to emit lows so that power can be removed
from the rest of the circuit, if desired, while the 80C51BH
is in its Power-Down mode.

The port pins continue to emit whatever data was written
to them. Note that Port 2 emits its P2 register data even if
execution was from external program memory. Port 0
also emits its PO register data, but if execution was from
external program memory, the PO register data is FF.
The oscillator is stopped, and the part remains in this
state as long as Vcc is held, and until it receives an
external reset signal.

The only exit from Power Down is a hardware reset.
Since the oscillator was stopped, RST must be held ac-
tive long enough for the oscillator to re-start and stabilize.
Then the reset function initializes all the Special Function
Registers (ports, timers, etc.) to their reset values, and
re-starts the program from location 0. Therefore, timer
reloads, interrupt enables, baud rates, port status, etc.
need to be re-established. Reset does not affect the
content of the on-chip data RAM. If Vcc was held during
Power Down, the RAM data is still good.

USING THE POWER-DOWN MODE

The software-invoked Power-Down feature offers a
means of reducing the power consumption to a mere
trickle in systems that are to remain dormant for some
period of time, while retaining important data. The user
should give some thought to what state the port pins
should be left in during the time the clock is stopped, and
write those values to the port latches before invoking
Power Down.

Table 7-3. Status of Pins in Idle and Power-Down Modes
(“SFR data” means the port pins emit their internal register data;
“PCH” is the high byte of the program counter)

Internal Execution

External Execution

Pin Idle Power Down Idle Power Down
ALE 1 1 o]
PSEN 1 1 0
PO SFR data SFR data high-Z high-Z
P1 SFR data SFR data SFR data SFR data
P2 SFR data SFR daa PCH SFR data
P3 SFR data SFR data SFR data SFR data

7-33

CHAPTER 7
80C51 Family

If Vec is going to be held to the entire circuit, values
should be written to the port latches that would deselect
peripherals before invoking Power Down. For example, if
external memory is being used, the P2 SFR should be
loaded with a value that will not generate an active chip
select to any memory device.

In some applications, Vcc to part of the system may be
shut off during Power Down, so that even quiescent and
standby currents are eliminated. Signal lines that con-
nect to those chips must be brought to a logic low,
whether the chip in question is CMOS, NMOS, or TTL,
before Vcc is shut off to them. CMOS pins have parasitic
pn junctions to Vec, which will be forward biased if Vec is
reduced to zero while the pin is held at a logic high.
NMOS pins often have FETSs that look like diodes to Vce.
TTL circuits may actually be damaged by an input high if
Vce = 0. That is why the 80C51BH outputs low at ALE and
PSEN during Power Down.

Figure 7-6 shows a circuit that can be used to turn Vec off
to part of the system during Power Down. The circuit will
ensure that the secondary circuit is not de-energized

until after the 80C31BH is in Power Down, and that the
80C31BH does not receive a reset (terminating the
Power-Down mode) before the secondary circuit is re-
energized. Therefore, the program memory itself can be
part of the secondary circuit.

In Figure 7-6, when Vcc is switched on to the 80C31BH,
capacitor C1 provides a power-on reset. The reset func-
tion writes 1s to all the port pins. The 1 at P2.6 turns Q1
on, enabling Vcc to the secondary circuit through transis-
tor Q2. As the 80C31BH comes out of reset, Port 2
commences emitting the high byte of the Program
Counter, which results in the P2.7 and P2.6 pins output-
ting 0s. The 0 at P2.7 ensures continuation of Vcc to the
secondary circuit.

The system software must now write a1 to P2.7 and a0
to P2.6 in the Port 2 SFR, P2. These values will not
appear at the Port 2 pins as long as the device is fetching
instructions from external program memory. However,
whenever the 80C31BH goes into Power Down, these
values will appear at the port pins, and will shut off both
transistors, disabling Vce to the secondary circuit.

c1 Veo
Py VL
7|
1uF
20K
| ¢(
L D1 80C31BH It l
- RST —
D2
R P/
P2.7 — VW ? |\02
—_._J: P26 R — Voo
33K
c2

-—t

T 1uF

% 20K

Figure 7-6. The 80C31BH De-energizes Part of the Circuit (Vcc2) During Power Down
(selections of R and Q2 depend on Vcc2 current draw)

7-34

CHAPTER 7
80C51 Family

Closing the switch S1 re-energizes the secondary circuit,
and at the same time sends a reset through C2 to the
80C31BH to wake it up. The diode D1 is to prevent C1
from hogging current from C2 during this secondary re-
set. D2 prevents C2 from discharging through the RST
pin when Vcc to the secondary circuit goes to zero.

USING POWER MOSFETS TO
CONTROL Ve

Power MOSFETS are gaining in popularity and availabil-
ity. The easiest way to control Vcc is with a Logic Level
pFET, as shownin Figure 7-7a. This circuit allows the full
Ve to be used to turn the device on. Unfortunately,
power pFETs are not economically competitive with
bipolar transistors of comparable ratings.

Power nFETs are both economical and available, and
can be used in this application if a DC supply of higher
voltage is available to drive the gate. Figure 7-7b shows
how to implement a Vec switch using apowernFET and a
(nominally) +12-V supply. The problem here is that if the
device is on, its source voltage is +5 V. To maintain the
on state, the gate has to be another 5 or 10 V above that.
The “12-V” supply is not particularly critical. A minimally
filtered, unregulated rectifier will suffice.

BATTERY BACKUP SYSTEMS

Here we consider circuits that normally draw power from
the AC line, but switch to battery operation in the event of
a power failure. We assume that in battery operation
high-current loads will be allowed to die along with the
AC power. The system may continue then with reduced
functionality, monitoring a control transducer, perhaps,
ordrivinganLCD. Orit may go into abare-bones survival
mode, in which critical data is saved but nothing else
happens until AC power is restored.

Inany case, itis necessary to have some early warning of
an impending power failure so that the system can ar-
range an orderly transfer to battery power. Early warning
systems can operate by monitoring either the AC line
voltage or the unregulated rectifier output, or even by
monitoring the regulated DC voltage.

Monitoring the AC line voltage gives the earliest warning.
That way you can know within one or two half-cycles of
line frequency that AC power is down. In most cases you
then have at least another half-cycle of line frequency
before the regulated Vcc starts to fall. In a half-cycle of
line frequency, an 80C51BH can execute about 5,000
instructions—plenty of time to arrange an orderly trans-
fer of power.

The circuit in Figure 7-8 uses a Zener diode to test the
line voltage each half cycle, and a junction transistor to
pass the information on the 80C51BH. Obviously a volt-
age comparator with a suitable reference source can
perform the same function, if one prefers. If the line volt-
age reaches an acceptably high level, it breaks over Z1,
drives Q1 to saturation, and interrupts the 80C51BH.
The interrupt would be transition-activated in this appli-
cation. The interrupt service routine reloads one of the
80C51BH’s timers to a value that will make it roll over in
something between one and two half-cycles of line fre-
quency. As long as the line voltage is healthy, the timer
never rolls over, because itis reloaded every half cycle. If
there is a single half cycle in which the line voltage does
not reach a high enough level to generate the interrupt,
the timer rolls over and generates a timer interrupt.

The timer interrupt then commences the transition to
battery backup. Critical data needs to be copied into
protected RAM. Signals to circuits that are going to lose
power must be written to logic low. Protected circuits

Veer
|'-—-——|v
33K l e
P2.7 —A\\N *—¢ —
2N3904 l
p— Veco
P2.6
33K

a. Using a pFET

+12V

P2.7

P2.6

b. Using an nFET

Figure 7-7. Using Power MOSFETS to Control Vcc2

7-35

CHAPTER 7
80C51 Family

Veer Veee
4
AC Vee ° i ol le
Line — _I, Reg __JE‘ T .
\ 4 — —._]7 — = Backup
e - ——. Battery
20KS S 20K Ve I
|
Vee 1
12K —
21 INTO
Y otuF | 80C51BH
o K]‘ a 80C31BH
2N3904 []Vs
or Equivalent — e

Figure 7-8. Power Failure Detector with Battery Backup
(when AC power fails, Vcc: goes down and Vcez is held)

(those powered by Vccz) that communicate with unpro-
tected circuits must be deselected. The microcontroller
itself may be put into Idle, so that it can continue some
level of interrupt-driven functionality, or it may be put into
Power Down.

Note that if the CPU is going to invoke Power Down, the
Special Function Registers may also need to be copied
into protected RAM, since the reset that terminates the
Power-Down mode will also initialize all the SFRs to their
reset values.

The circuit in Figure 7-8 does not show a wake-up
mechanism. A number of choices are available, how-
ever. A pushbutton could be used to generate an inter-
rupt, if the CPU is in Idle, or to activate reset, if the CPU is
in Power Down.

Automatic wake-up on power restoration is also possi-
ble. If the CPU is in Idle, it can continue to respond to any
interrupts that might be generated by Q1. The interrupt
service routine determines from the status of flag bits
GF0and GF1in PCON thatitisin Idle because there was
a power outage. It can then sample Vcer through a volt-
age comparator similar to Z1, Q1 in Figure 7-8. A satis-
factory level of Veci would be indicated by the transistor
being in saturation.

But perhaps the timer, that is the key to the operation of
the circuit in Figure 7-8, cannot be spared. Inthat case a
retriggerable one-shot, triggered by the AC line voltage,
can perform essentially the same function. Figure 7-9
shows an example of this type of power-failure detector.
A retriggerable one-shot (one half of a 74HC123) moni-
tors the AC line voltage through transistor Q1. Q1 retrig-
gersthe one-shot every half cycle of line frequency. If the

output pulse width is between one and two half-cycles of
line frequency, then a single missing or low half cycle will
generate an active low warning flag, which can be used
to interrupt the microcontroller.

The interrupt routine takes care of the transition to bat-
tery back-up. From this point, Vcci may or may not actu-
ally drop out. The missing half-cycle of line voltage that
caused the Power-Down sequence may have been noth-
ing more than a short glitch. If the AC line comes back
strong enough to trigger the one-shot while Vec: is stillup
(as indicated by the state of transistor Q2), then the other
half of the 74HC123 will generate a wake-up signal.

Having been awakened, the 80C51BH will stay awake
for at least another half-cycle of line frequency (another
5,000 or so instructions) before possibly being told to
arrange another transfer of power. Consequently, if the
line voltage is jittering erratically around the switchover
point (determined by diode Z1), the system will limp
along executing in half-cycle units of line frequency.

On the other hand, if the power outage is real and
lengthy, Vcet will eventually fall below the level at which
the backup battery takes over. The backup battery main-
tains power to the 80C51BH, the 74HC 123, and to what-
ever other circuits are being protected during this out-
age. The battery voltage must be high enough to
maintain Vecmin) specs to the 80C51BH.

If the microcontroller is an 80C31BH, executing out of
external ROM, and if the 80C31BH is put into Idle during
the power outage, then the external ROM must also be
supplied by the battery. On the other hand, if the
80C31BH is put into Power Down during the outage,
then the ROM can be allowed to die with the AC power.

7-36

CHAPTER 7
80C51 Family

V, Backup
eez Battery

all

20K

A A

A%J.Illlllll

12K
W——9
47K " HF

RIC C S

TR QF—» Wake-Up

B Ql—% Wake-Up
Ay

1/2 74HC123
= » INTO
(80C51BH)

Figure 7-9. Power Failure Detector uses retriggerable one-shots to flag impending power
outage and generate automatic wake-up when power returns

The considerations here are the same as in Figure 7-6:
Vce to the ROM s still up at the time Power Down is
invoked, and we must ensure (through selection of diode
Z2in Figure 7-9) that the 80C31BH is not awakened until
ROM power is back in spec.

POWER SWITCHOVER CIRCUITS

Battery backup systems need to have a way for the pro-
tected circuits to draw power from the line-operated
power supply when that source is available, and to switch
over to battery power when required. The switchover
circuit is simple if the entire system is to be battery pow-

ered in the event of a line power outage. In that case a
pair of diodes suffice, as shown in Figure 7-9, provided
Vecmin sSpecs are still met after the diode drop has been
subtracted from its respective power source.

The situation becomes more complicated when part of
the circuit is going to be allowed to die when the AC
power goes out. In that case it is difficult to maintain
equal Vces to protected and unprotected circuits (and
possibly dangerous not to). The problem can be allevi-
ated by using a Schottky diode instead of a 1N4001, for
its lower forward voltage drop. The 1N5820, for example,

Veee

vCCl

a. Using a PNP Transistor

Veea
4

D OERE N

-

A

b. Using a Power MOSFET

Figure 7-10. Power Switchover Circuits

CHAPTER 7
80C51 Family

has a forward drop of about 0.35 V at 1A. Other solutions
are to use a transistor or power MOSFET switch, as
shown in Figure 7-10. With minor modifications this
switch can be controlled by port pins.

80C31BH + CMOS EPROM

The 27C256 is AMD’s 32K-byte CMOS EPROM. It re-
quires an external address latch, and can be used with
the 80C31BH as shown in Figure 7-11a. In most 8031 +
27256 (NMOS) applications, the Chip Enable (CE) pin is
hardwired to ground (since it's normally the only program
memory on the bus). This can be done with the CMOS
versions as well, but there is some advantage in connect-
ing CE to ALE, as shown in Figure 7-11. The advantage
is that if the 80C31BH is put into Idle mode, since ALE
goes to a 1 in that mode, the 27C256 will be deselected
and go into a low-current standby mode.

The timing waveforms for this configuration are shown in
Figure 7-11b. The signals and timing parameters in pa-
rentheses are those of the 27C256 and the others are of
the 80C31HB, except Tprop is a parameter of the ad-
dress latch. The requirements for timing compatibility are
TAVIV - Tprop > tACC

TLLIV > tCE

TPLIV > tOE

TPXIZ > tDF

If the application is going to use the Power-Down mode
there is another consideration; in Idle, ALE = PSEN = 1,

and in Power Down, ALE = PSEN = 0. In a realistic
application there are likely to be more chips in the circuit
than are shown in Figure 7-11, and it is likely that the
nonessential ones will have their Vecc removed while the
CPU s in Power Down. In that case the EPROM and the
address latch should be among the chips that have Vcc
removed, and logic lows are exactly what are required at
ALE and PSEN.

But if Vcc is going to be maintained to the EPROM during
Power Down, then it will be necessary to deselect the
EPROM when the CPU is in Power Down. If Idle is never
invoked, CE of the EPROM can be connected to P2.7 of
the 80C31BH, as shown in Figure 7-12a. In normal op-
eration, P2.7 will be emitting the MSB of the Program
Counter, whichiis 0 if the program contains less than 32K
of code. Then when the CPU goes into Power Down, the
Port 2 pins emit P2 SFR data, whichputs a 1 at P2.7, thus
deselecting the EPROM.

If Idle and Power Down are both going to be used, CE of
the EPROM can be driven by the logical OR of ALE and
P2.7, as shown in Figure 7-12b. In Idle, ALE = 1 will
deselect the EPROM, and in Power Down, P2.7 = 1 will
deselect it.

Pull-down resistors are shown in Figure 7-11 under the
assumptionthat something onthe bus is going to have its
Vee removed during Power Down. If this is not the case,
pull-ups can be used as well as pull-downs.

e Tro
“10kS x8 i
ya . 4 >
Po — oo, ADDR: | Xe—aeg)
’ _ TAVIV .
4 4
80C31BH 74HC373 27C256 Po PCL > {_INSTR X PCL
TLLIV
Ach, ALE: (tCE) y \
, f TPLIV | TPxiz
<+ (1DF)
P2 77 T > Ac-Au PSEN (tOE)
ALE o »|CE
PSEN 1 OE

a. Circuit

b. Timing Waveforms

Figure 7-11. 80C31BH + 27C256

7-38

CHAPTER 7
80C51 Family

P2.7 CE
of > of
80C31BH 27C256

a. Power Down is Used but Not Idle

P2.7 27C256

b. Idle and Power Down Both Used

of
80C31BH

Figure 7-12. Modifications to 80C31/27C256 Interface

SCANNING A KEYBOARD

There are many different kinds of keyboards, but alpha-
numeric keyboards generally consist of a matrix of eight
scan lines and eight receive lines as shown in Figure
7-13. Each set of lines connects to one port of the
microcontroller. The software has written 0s to the scan
lines, and 1s to the receive lines. Pressing a key con-
nects ascanline to a receive line, thus pulling the receive
line to a logic low.

The eight receive lines are ANDed to one of the external
interrupt pins, so that pulling any of the receive lines low
generates an interrupt. The interrupt service routine has
to identify the pressed key, if only one key is down, and
convert that information to some useful output. If more
than one key in the line matrix is found to be pressed, no
action is taken. (This is a “two key lock-out” scheme.)

A

INTO

Y P1 P24

Scan Lines
3\
Foes
J
_ 80C51BH _.///
N

Figure 7-13. Scanning a Keyboard

7-39

CHAPTER 7
80C51 Family

On some keyboards, certain keys (Shift, Control,
Escape, etc.) are not a part of the line matrix. These keys
would connect directly to a port pin on the microcon-
troller, and would not cause lock-out if pressed simulta-
neously with a matrix key, nor generate an interrupt if
pressed singly.

Normally the microcontroller would be in Idle mode when
a key has not been pressed, and another task is not in
progress. Pressing a matrix key generates an interrupt,
which terminates the Idle. The interrupt service routine
would first call a 30-ms (or so) delay to debounce the key,
and then set about the task of identifying which key is
down.

First, the current state of the receive lines is latched into
an internal register. Then Os are written to the receive
lines and 1stothe scanlines, and the scanlines are read.
If a single key is down, all but one of these lines would
be read as 1s. By locating the single 0 in each set of
lines, the pressed key can be identified. If more thanone
matrix key is down, one or both sets of lines will contain
multiple Os.

A subroutine is used to determine which of 8 bits in either
set of lines is 0, and whether more than one bitis 0. Table
7-4 shows a subroutine (SCAN) that does that using the
8051 bit-addressing capability. To use the subroutine,
move the line data into a bit-addressable RAM location
named LINE, and call the SCAN routine. The number of
LINE bits that are zero is returned in ZERO_COUNTER.
If only one bit is zero, its number (1 through 8) is returned
in ZERO_BIT.

The interrupt service routine that is executed inresponse
to a key closure might then be as follows:

RESPONSE_TO_KEY_CLOSURE:
CALL DEBOUNCE_DELAY
MOV LINE,P1; ;See Figure 9-16.
CALL SCAN
DJNZ ZERO_COUNTER,REJECT
MOV ADDRESS,ZERO_BIT
MOV P2 #0FFH; ;See Figure 9-16.
MOV P1,#0
MOV LINE,P2
CALL SCAN
DJNZ ZERO_COUNTER,REJECT
XCH AZERO_BIT
SWAP A
ORL ADDRESS,A
XCH AZERO_BIT
MOV P1#0FFH
MOV P2#0
REJECT: CLR
RETI
Notice that RESPONSE_TO_KEY_CLOSURE does

not change the Accumulator, the PSW, nor any of
the registers RO through R7. Neither do SCAN or

EXO0

Table 7-4. Subroutine SCAN Determines which of Eight Bits in LINE is 0

SCAN MOV ZERO_COUNTER,#0 ;

JB LINE.O,ONE ;

INC ZERO_COUNTER ;

MoV ZERO_BIT,#1 ;
ONE: JB LINE.1,TWO ;

INC ZERO_COUNTER

MoV ZERO_BIT,#2
TWO: JB LINE.2, THREE

INC ZERO_COUNTER

MOV ZERO_BIT,#3 ;
THREE: JB LINE.3,FOUR

INC ZERO_COUNTER

MOV ZERO_BIT,#4 ;
FOUR: JB LINE.4,FIVE

INC ZERO_COUNTER

MOV ZERO_BIT #5 ;
FIVE: JB LINE.5,SIX

INC ZERO_COUNTER

MOV ZERO_BIT,#6 ;
SIX: JB LINE.6,SEVEN

INC ZERO_COUNTER

MOV ZERO_BIT,#7 ;
SEVEN: JB LINE.7,EIGHT

INC ZERO_COUNTER

MOV ZERO_BIT,#8 ;
EIGHT: RET

ZERO_COUNTER counts the number of Os in LINE.
Test LINE bit 0.
If LINE.O = 0, increment ZERO_COUNTER

and record that line number 1 is active.

Procedure continues for other LINE bits.

Line number 2 is active.

Line number 3 is active.

Line number 4 is active.

Line number 5 is active.

Line number 6 is active.

Line number 7 is active.

Line number 8 is active.

7-40

CHAPTER 7
80C51 Family

DEBOUNCE_DELAY. The result is a one-byte key
address (ADDRESS) thatidentifies the pressed key. The
key’'s scan line number is in the upper nibble of
ADDRESS, and its receive line number is in the lower
nibble. ADDRESS can be used in a look-up table to
generate a key code to transmit to a host computer,
and/or to a display device.

The keyboard interrupt itself must be edge-triggered,
ratherthan level-activated, so that the interrupt routine is
invoked when a key is pressed, and is not constantly
being repeated as long as the key is held down. In
edge-triggered mode, the on-chip hardware clears the
interrupt flag (EXO, in this case) as the service routine is
being vectored to. In this application, however, contact
bounce will cause several more edges to occur after the
service routine has been vectored to, during the
DEBOUNCE_DELAY routine. Consequently, itis neces-
sary to clear EX0 again in software before executing
RETI.

The debounce delay routine also takes advantage of the
Idle mode. In this routine a timer must be preloaded with
a value appropriate to the desired length of delay. This
value would be

(OSC kHz) - (delay time ps)
12

For example, with a 3.58-MHz oscillator frequency, a
30-ms delay could be obtained using a preload value of
—8950, or DDOA, in hex digits.

Inthe debounce delay routine (Table 7-5), the timer inter-
rupt is enabled and set to a higher priority than the key-
board interrupt, because as we invoke Idle, the keyboard
interrupt is still “in progress.” An interrupt of the same
priority will not be acknowledged, and will not terminate
the idie mode. With the timer interrupt set o priority i
while the keyboard interrupt is a priority 0, the timer
interrupt, when it occurs, will be acknowledged and will
wake up the CPU. The timer interrupt service routine

timer preload = —

does not itself have to do anything. The service routine
might be nothing more than a single RETI instruction.
RETI fromthe timer interrupt service routine then returns
execution to the debounce delay routine, which shuts
down the timer and returns execution to the keyboard
service routine.

DRIVING AN LCD

An LCD (Liquid Crystal Display) consists of a backplane
and any number of segments or dots that will be used to
form the displayed image. Applying a voltage (nominally
4 to 5 V) between any segment and the backplane
causes the segment to darken. The only catch is that the
polarity of the applied voltage has to be periodically re-
versed, or else a chemical reaction takes place in the
LCD that causes deterioration and eventual failure of the
liquid crystal.

To prevent this from happening, the backplane and all
the segments are driven with an AC signal, which is
derived from a rectangular voltage waveform. If a seg-
ment is to be “off,” it is driven by the same waveform as
the backplane. Thus, it is always at backplane potential.
If the segment is to be “on,” it is driven with a waveform
that is the inverse of the backplane waveform. Thus, it
has about 5 V of periodically changing polarity between it
and the backplane.

With a little software overhead, the 80C51BH can per-
form this task without the need for additional LCD driv-
ers. The only drawback is that each LCD segment uses
up one port pin, and the backplane uses one more. If
more than, say, two 7-segment digits are being driven,
there are not many port pins left for other tasks. Never-
theless, assuming a given application leaves enough
port pins available to support this task, the consider-
ations for driving the LCD are as follows.

Suppose, for example, it is a 2-digit display with a deci-
mal point. One port (TENS_DIGIT) connects to the
seven segments of the tens digit plus the backplane.

Table 7-5. Subroutine DEBOUNCE_DELAY Puts the 80C51BH into Idle During the Delay Time

DEBOUNCE_DELAY:

MOV TL1,#TL1_PRELOAD ;
MOV TH1,#TH1_PRELOAD ;
SETB ET1 ;
SETB PT1 ;
SETB TR1 ;
ORL PCON, #1 ;

Preload low byte.

Preload high byte.

Enable Timer 1 interrupt.

Set Timer 1 interrupt to high priority.
Start timer running.

Invoke Idle mode.

; The next instruction will not be executed until the delay times out.

CLR TR1 ;
CLR PT1 ;
CLR ET1 H
RET ;

Stop the timer.

Back to priority O (if desired).

Disable Timer 1 interrupt (if desired).
Continue keyboard scan.

7-41

CHAPTER 7
80C51 Family

Another port (ONES_DIGIT) connects to a decimal point
plus the seven segments of the ones digit.

One of the 80C51BH timers is used to mark off half-
periods of the drive voltage waveform. The LCD drive
waveform should have a rep rate between 30 and 100
Hz, but it’s not very critical. A half-period of 12 ms will set
the rep rate to about 42 Hz. The preload/reload value to
get 12 ms to rollover is the 2's complement negative of
the oscillator frequency in kHz: If the oscillator frequency
is 3.58 MHz, the reload value is —3850, or F204 in hex
digits.

Now, the 80C51BH would normally be in Idle, to con-
serve power, during the time that the LCD and other
tasks are not requiring servicing. When the timer rolls
over, it generates an interrupt that brings the 80C51BH
out of Idle. The service routine reloads the timer (for the
next rollover), and inverts the logic levels of all the pins
that are connected to the LCD. It might look like this:

LCD_DRIVE_INTERRUPT:
MOV TL1,#LOW(-XTAL_FREQ)
MOV TH1 #HIGH(-XTAL_FREQ)

XRL TENS_DIGIT,#0FFH
XRL ONES_DIGIT #0FFH
RETI

To update the display, one would use a look-up table to
generate the characters. In the table, “on” segments are
represented as 1s, and “off” segments as 0s. The back-
plane bit is represented as a 0. The quantity to be dis-
played is stored in RAM as a BCD value. The look-up
table operates on the low nibble of the BCD value, and
produces the bit pattern that is to be written to either the
ones digit or the tens digit. Before the new patterns can
be writien io the LCD, the LCD drive interrupt has to be
disabled. That is to prevent a polarity reversal from tak-
ing place between the times the two digits are written.
The update subroutine is shown in Table 7-6.

USING AN LCD DRIVER

As was noted, driving an LCD directly with an 80C51BH
uses a lot of port pins. LCD drivers are available in
CMOS to interface an 80C51BH to a 4-digit display using
only seven of the 80C51BH’s I/O pins. Basically, the
80C51BH tells the LCD driver what digit is to be dis-
played (four bits) and what position it is to be displayed in
(two bits), and toggles a Chip Select pin to tell the driver
to latch this information. The LCD driver generates the
display characters (hex digits), and takes care of the
polarity reversals using its own RC oscillator to generate
the timing. Figure 7-14 shows an 80C51BH working with
an ICM7211M to drive a 4-digit LCD; the software that
updates the display is shown in Table 7-7.

One could equally well send information to the LCD
driver overthe bus by setting up the Accumulator with the
digit select and data input bits, and executingaMOVX @
RO,A instruction. The LCD-driver chip select would be
driven by the CPU WR signal. This is a little easier in
software than the direct bit manipulation shown in Figure
7-14. However, it uses more /O pins, unless there
is already some external memory involved. In that case,
no extra pins are used up by adding the LCD driver to
the bus.

RESONANT TRANSDUCERS

Analog transducers are oftenused to convert the value of
aphysical property, such as temperature, pressure, etc.,
to an analog voltage. These kinds of transducers then
require an analog-to-digital converter to put the mea-
surement into a form that is compatible with a digital
control system. Another kind of transducer is now be-
coming available that encodes the value of the physical
property into a signal that can be directly read by a digital
control system. These devices are called rescnant

transducers.

Table 7-6. UPDATE_LCD Routine Writes Two Digits to an LCD

UPDATE_LCD:
CLR ET1 ;
MOV DPTR #TABLE_ADDRESS
MOV A,BCD_VALUE :
SWAP A :
ANL A#OFH :
Move A@A+DPTR :
MOV TENS_DIGIT,A :
MOV A,BCD_VALUE :
ANL A #OFH ;
MOVC A@A+DPTR ;
MOV C,DECIMAL_POINT :
MOV ACC.7,C ;
MOV ONES_DIGIT,A ;
SETB ETH :
RET

Disable LCD drive interrupt.

Look-up table begins at TABLE_ADDRESS.

Digits to be displayed.

Move tens digit to low nibble.

Mask off high nibble.

Tens digit pattern to accumulator.

Update LCD tens digit.

Digits to be displayed.

Mask off tens digit.

Ones digit pattern to accumulator.

Add decimal point to segment
pattern. Update LCD decimal point
and ones digit.

Re-enable LCD drive interrupt.

7-42

CHAPTER 7
80C51 Family

80C51BH
1
Any BO
Port Y
B2
B3
CS

Digit
Select

Data
Input

LCD

A

Figure 7-14. Using an LCD Driver

Resonant transducers are oscillators whose frequency
depends in a known way on the physical property being
measured. These devices output a train of rectangular
pulses whose repetition rate encodes the value of the
quantity being measured. The pulses can in most cases
be fed directly into the 80C51BH, which then measures
either the frequency or period of the incoming signal,
basingthe measurement onthe accuracy of its own clock
oscillator. The 80C51BH can even do this in its sleep,
that is, in Idle.

When the frequency or period measurement is com-
pleted, the 80C51BH wakes itself up for a very short time
to perform a sanity check on the measurement and con-
vertitin software to any scaling of the measured quantity
that may be desired. The software conversion can in-
clude corrections for nonlinearities in the transducer’s
transfer function.

Table 7-7. UPDATE_LCD Routine Writes Four Digits to an LCD Driver

UPDATE_LCD:
MOV A,DISPLAY_HI ;
SETB DIGIT_SELECT_2 ;
SETB DIGIT_SELECT_1 ;
CALL SHIFT_AND_LOAD ;
CLR DIGIT_SELECT_t ;
CALL SHIFT_AND_LOAD ;
MOV ADISPLAY_LO ;
CLR DIGIT_SELECT_2 ;
SETB DIGIT_SELECT_1 ;
CALL SHIFT_AND_LOAD ;
CLR DIGIT_SELECT_1 ;
CALL SHIFT_AND_LOAD ;
RET
SHIFT_AND_LOAD

RLC A ;
MOV DAT_INPUT_B3,C ;
RLC A ;
MOV DATA_INPUT_B2,C ;
RLC A ;
MOV DATA_INPUT_B1,C ;
RLC A ;
MOV DATA_INPUT_BO,C ;
CLR CHIP_SELECT ;
SETB CHIP_SELECT ;
RET

High byte of 4-digit display.
Select leftmost digit of LCD.

(digit address =11B.)
High nibble of high byte to selected digit.
Select second digit of LCD (address = 10B).
Low nibble of high byte to selected digit.
Low byte of 4-digit display.
Select third digit of LCD.

(digit address =01B.)
High nibble of low byte to selected digit.
Select fourth digit (address = 00B).
Low nibble of low byte to selected digit.

MSB to carry bit (CY).

CY to Data Input pin B3.
Next bit to CY.

CY to Data Input pin B2.
Next bit to CY.

CY to Data Input pin B1.
Last bit to CY.

CY to Data Input pin BO.
Toggle Chip Select.

0-to-1 transition latches info.

7-43

CHAPTER 7
80C51 Family

Resolution is also controlled by software, and can even
be dynamically varied to meet changing needs as a situ-
ation becomes more critical. For example, in a process
controller, resolution can be increased (‘fine tune” the
control) as the process approaches its target.

The nominal reference frequency of the output signal
from these devices is in the range of 20 Hz to 500 kHz,
depending on the design. Transducers are available that
have afull-scale frequency shift of 2to 1. The transducer
operates from a supply voltage range of 3 V to 20 V,
which means it can operate from the same supply volt-
age as the 80C51BH. At 5 V, the transducer draws less
than 5 mA (Reference 5). It can normally be connected
directly to one of the 80C51BH port pins, as shown in
Figure 7-15.

Vee
Vee —I
—-— 80C51BH
Resonant
Transducer Int0
| or
TO

T~

Figure 7-15. Resonant Transducer Does Not
Require An A/D Converter

FREQUENCY MEASUREMENTS

Measuring a frequency means counting pulses for a
known sample time. Two timer/counters can be used,
one to mark off the sample time and one to count pulses.
If the frequency being counted does not exceed 50 kHz
orso, one may equally well connect the transducer signal
to one of the external interrupt pins and count pulses in
software. That frees up one timer, with very little cost in
CPU time.

The count that is directly obtained is T - F, where T is the
sample time and F is the frequency. The full scale range
is T+ (Fmax — Fmin). For n-bit resolution

) e
1LSB = T (Fmax — Fmin)
2n
Therefore, the sample time required for n-bit resolution is

2
~ Fmax — Fmin

For example, 8-bit resolution in the measurement of a
frequency that varies between 7 kHz and 9 kHz would
require, according to this formula, a sample time of 128
ms. The maximum acceptable frequency count would be
128 ms-9 kHz=1152 counts. The minimum would be
896 counts. Subtracting 896 from each frequency count
(or presetting the frequency counter to —-896 = OFC80H)
would allow the frequency to be reported on a scale of 0
to FF in hex digits.

To implement the measurement, one timer is used to
establish the sample time. The timer is preset to a value
that causes it to roll over at the end of the sample time,
generating an interrupt and waking the CPU from its Idle
mode. The required preset value is the 2’s complement
negative of the sample time measured in machine cy-
cles. The conversion from sample time to machine cy-
cles is to multiply it by 1/12 the clock frequency. For
example, if the clock frequency is 12 MHz, then a sample
time of 128 ms is

(128 ms) - (12000 kHz)/12 = 128000 machine cycles.

Then the required preset value to cause the timer to roll
overin 128 ms is

—128000 = FEOCO0O0, in hex digits.

Note that the preset value is three bytes wide, whereas
the timer is only two bytes wide. This means the timer
must be augmented in software in the timer interrupt
routine to three bytes. The 80C51BH has a DJNZ in-
struction (decrement and jump if not zero) that makes it
easier to code the third timer byte to count down instead
of up. If the third timer byte counts down, its reload value
is the 2's complement of what it would be for an up-
counter. For example, if the 2’s complement of the sam-
ple time is FEOCOO, then the reload value for the third
timer byte would be 02, instead of FE. The time interrupt
routine might then be:

TIMER_INTERRUPT_ROUTINE:
DJNZ THIRD_TIMER_BYTE,OUT
MOV TLO,#0
MOV THO,#0CH
MOV THIRD_TIMERBYTE,#2
MOV FREQUENCY,COUNTER_LO
;Preset COUNTER to —896:
MOV COUNTER_LO,#80H
MOV COUNTER_HI#0FCH
OUT: RETI

At this point the value of the frequency of the transducer
signal, measured to 8-bit resolution, is contained in FRE-
QUENCY. Note that the timer can be reloaded on the fly.
Note too that for 8-bit resolution only the low byte of the
frequency counter needs to be read, since the high byte
is necessarily 0. However, one may want to test the high
byte to ensure that it is 0, as a sanity check on the data.
Both bytes, of course, must be reloaded.

7-44

CHAPTER 7

PERIOD MEASUREMENTS

Measuring the period of the transducer signal means
measuring the total elapsed time over a known number,
N, of transducer pulses. The quantity that is directly
measured is NT, where T is the period of the transducer
signal in machine cycles. The relationship between T in
machine cycles and the transducer frequency F in arbi-
trary frequency units is

Fxtal
T= F - (1112)

where Fxtalis the 80C51BH clock frequency, inthe same
units as F.

The full scale range then is N - (Tmax — Tmin). For n-bit
resolution

1LSB = N-(Tmax — Tmin)

2n

Therefore the number of periods over which the elapsed
time should be measured is

- 2"
" Tmax — Tmin

However, N must also be aninteger. Itis logical to evalu-
ate the above formula (do not forget Tmax and Tmin
have to be in machine cycles) and select for N the next
higher integer. This selection gives a period measure-
ment that has somewhat more than n-bit resolution, but it
can be scaled back if desired.

Forexample, suppose an 8-bit resolutioniswanted inthe
measurement of the period of a signal with a frequency
that varies from 7.1 to 9 kHz. If the clock frequency is
12 MHz, Tmax is (12000 kHz/7.1 kHz) - (1/12) = 141
machine cycles. Tmin is 111 machine cycles. The re-
quired value for N, then, is 256/(141 — 111) = 8.53 peri-
ods, according to the formula. Using N = 9 periods will
give a maximum NT value of 141 -9 = 1269 machine cy-
cles. The minimum NT will be 1119 =999 machine cy-
cles. A lookup table can be used to scale these values
back to a range of 0 to 255, giving precisely the 8-bit
resolution desired.

To implement the measurement, one timer is used to
measure the elapsed time, NT. The transducer is con-
nected to one of the external interrupt pins, and this
interrupt is configured to the transition-activated mode.
In the transition-activated mode, every 1-t0-0 transition
in the transducer output will generate an interrupt. The
interrupt routine counts transducer pulses, and when it
gets to the predetermined N, it reads and clears the
timer. For the specific example cited above, the interrupt
routine might be:

80C51 Family

INTERRUPT_RESPONSE:

DJNZ N,OUT
MOV N#9

CLR EA

CLR TRt

MOV NT_LO,TL1

MOV NT_HI,TH1

MOV TL1#9

MOV TH1,#0

SETB TR1

SETB EA

CALL LOOKUP_TABLE
OUT: RETI

In this routine a pulse counter N is decremented from its
preset value, 9, to 0. When the counter gets to 0 it is
reloaded to 9. Then all interrupts are blocked for a short
time while the timer is read and cleared. The timer is
stopped during the read and clear operations, so “clear-
ing” it actually means presetting it to 9, to make up for the
9 machine cycles that are missed while the timer is
stopped.

The subroutine LOOKUP_TABLE is used to scale the
measurement back to the desired 8-bit resolution. it can
also include built-in corrections for errors or non-
linearities in the transducer’s transfer function.

The subroutine uses the MOVC A, @ A + DPTR instruc-
tionto access the table, which contains 270 entries com-
mencing at the 16-bit address referred to as TABLE. The
subroutine must compute the address of the table entry
that corresponds to the measured value of NT. This ad-
dress is

DPTR = TABLE + NT — NTMIN,
where NTMIN =999, in this specific example.
LOOKUP_TABLE:

PUSH ACC

PUSH PSW

MOV A#LOW(TABLE - NTMIN)
ADD ANT_LO

MOV DPLA

MOV A #HIGH(TABLE — NTMIN)
ADDC ANT_HI

MOV DPH,A

CLR A

MOVC A@A + DPTR

MOV PERIOD,A

POP PSW

POP ACC

RET

7-45

CHAPTER 7
80C51 Family

At this point the value of the period of the transducer
signal, measured to 8-bit resolution, is contained in
PERIOD.

PULSE WIDTH MEASUREMENTS

The 80C51BH timers have an operating mode, called the
“gate” mode, that is particularly suited to pulse-width
measurements, and is useful in these applications if the
transducer signal has a fixed duty cycle.

In this mode, the timer is turned on by the on-chip cir-
cuitry in response to an input high at the external inter-
rupt pin, and off by an input low, and it can do this while
the 80C51BH is in Idle. (The “gate” mode of timer opera-
tion is described in Chapter Two, Timer/Counters.) The
external interrupt itself can be enabled, so the same
1-to-0 transition from the transducer that turns off the
timer also generates an interrupt. The interrupt routine
then reads and resets the timer.

The advantage of this method is that the transducer sig-
nal has direct accessto the timer gate, with the result that
variations in interrupt response time have no effect on
the measurement.

Resonant transducers that are designed to fully exploit
the gate mode have an internal divide-by-N circuit that
fixes the duty cycle at 50% and lowers the output fre-
quency to the range of 250 to 500 Hz (to control RFl). The
transfer function between transducer period and mea-
sure and value is approximately linear, with known and
repeatable error functions.

NMOS/CMOS INTERCHANGEABILITY

The CMOS version of the 8051 is architecturally identical
withthe NMOS version, but there are nevertheless some
important differences between them of which the de-
signer should be aware. In addition, some applications
require interchangeability between NMOS and CMOS
parts. The differences are as follows:

External Clock Drive: To drive the NMOS 8051 with an
external clock signal, one normally grounds the XTAL1
pin and drives the XTAL2 pin. To drive the CMOS 8051
with an external clock signal, one must drive the XTAL1
pin and leave the XTAL2 pin unconnected. The reason
for the difference is that in the NMOS 8051, the XTAL2
pin drives the internal clocking circuits, whereas in the
CMOS version, the XTAL1 pin drives the internal clock-
ing circuits.

There are several ways to design an external clock drive
to work with both types. For low clock frequencies (below
6 MHz), the NMOS 8051 can be driven the same way as
the CMOS version, namely, through XTAL1 with XTAL2
unconnected. Another way is to drive both XTAL1 and
XTAL2, that is, drive XTAL1 and use an external inverter
to derive from XTAL1 a signal with whichto drive XTAL2.

In either case, a 74HC or 74HCT circuit makes an excel-
lent driver for XTAL1 and/or XTAL2, because neither the
NMOS nor the CMOS XTAL pins have TTL-like input
logic levels.

Unused Pins: Unused pins of Ports 1, 2, and 3 can be
ignored in both NMOS and CMOS designs. The internal
pull-ups will put them into a defined state. Unused Port 0
pins in 8051 applications can be ignored, even if they're
floating. But in 80C51BH applications, these pins should
not be left afloat. They can be externally pulled up or
down, orthey can be internally pulled down by writing Os
to them.

80C31BH designs may or may not need pull-ups on Port
0. Pull-ups are not needed for program fetches, because
in bus operations the pins are actively pulled high or low
by either the 8031 or the external program memory.
However, they are needed for the CMOS part if the Idle
or Power-Down mode is invoked, because in these
modes, Port 0 floats.

Logic Levels: If Vcc is between 4.5V and 5.5 V, aninput
signal that meets the NMOS 8051 input logic levels will
also meet the CMOS 80C51BH input logic levels (except
for XTAL1/XTAL2 and RST). For the same Vcc condition,
the CMOS device will reach or surpass the output logic
levels of the NMOS device. The NMOS device will not
necessarily reach the output logic levels of the CMOS
device. This is an important consideration if NMOS/
CMOS interchangeability must be maintained in an oth-
erwise CMOS system.

NMOS 8051 outputs that have internal pull-ups (Ports 1,
2, and 3) “typically” reach 4 V or more if lon is 0, but not
fast enough to meet timing specs. Adding an external
pull-up resistor will ensure the logic level, but still not the
timing, as shown in Figure 7-16. If timing is an issue, the
best way to interfface NMOS to CMOS is through a
74HCT circuit.

CMOS VIH o ®_NMOs

[y

At
Figure 7-16. Transition Shows Unspecified Delay
(At) in NMOS to 79HC Logic

7-46

CHAPTER 7
80C51 Family

Idle and Power Down: The Idle and Power-Down
modes exist only onthe CMOS devices, but if one wishes
to preserve the capability of interchanging NMOS and
CMOS 8051s, the software has to be designed so that
the NMOS parts will respond in an acceptable manner
when a CMOS reduced power mode is invoked.

For example, an instruction that invokes Power Down
can be followed by a “JMP $":

CLR EA
ORL PCON,#2
JMP §

The CMOS and NMOS parts will respond differently to
this sequence of code. The CMOS part, going into a
normal CMOS Power-Down mode, will stop fetching in-
structions until it gets a hardware reset. The NMOS part
will go through the motions of executing the ORL instruc-
tion, and then fetch the JMP instruction. It will continue
fetching and executing JMP $ until hardware reset.

Maintaining NMOS/CMOS 8051 interchangeability in re-
sponse to Idle requires more planning. The NMOS part
will not respond to the instruction that puts the CMOS
partinto Idle, so that instruction needs to be followed by a
software Idle. This would be an idling loop which would
be terminated by the same conditions that would termi-
nate the CMOS hardware Idle. Then when the CMOS
device goes into Iidle, the NMOS version executes the
idling loop until either a hardware reset or an enabled

interrupt is received. Now if Idle is terminated by an
interrupt, execution for the CMOS device will proceed
after RETI from the instruction following the one that
invoked Idle. The instruction following the one that in-
voked Idle is the idling loop that was inserted for the
NMOS device. At this point, both the NMOS and CMOS
devices must be able to fall through the loop to continue
execution.

One way to achieve the desired effect is to define a “fake”
Idle flag, and set it just before going into Idle. The instruc-
tion that invokes Idle is followed by a software idle:

SETB IDLE
ORL PCON,#1
JB IDLE,$

Now the interrupt that terminates the CMOS Idle must
also break the software idle. It does so by clearing the
“Idle” bit:

CLR
RETI

IDLE

Note too that the PCON register in the NMOS 8051
contains only one bit, SMOD, whereas the PCON regis-
ter in CMOS contains SMOD plus four other bits. Two of
those other bits are general purpose flags. Maintaining
NMOS/CMOS interchangeability requires that these
flags not be used.

7-47

CHAPTER 8

80C521 Family

80C521/80C321/80C541 Data Sheet 8-1
87C521/87C541 Data Sheet 8-22
Software Routines 8-37
Dual Data Pointer Routines 8-37
Block Move in External RAM 8-37
Higher Performance Interrupt Routines 8-39
Full Duplex Transmit/Receive Buffering 8-40
Tree Structure Manipulation 8-40
ROM Table Access 8-41
Creating an External Stack 8-41
Watchdog Timer Routines 8-42
WDT Enable, Clear, and Reset Cause 8-42
Power-Down Operation 8-43
Testing the Watchdog Timer 8-45
Using the Watchdog Timer as a Standard Timer 8-45
Software Reset Routines 8-47
Using Software Reset 8-47

Improving Reliability with Software Reset 8-48

80C521/80C321/80C541

CMOS Single-Chip Microcontroller

FINAL

DISTINCTIVE CHARACTERISTICS

® Software and pin-compatible with 80C51
® Dedicated Watchdog Timer

— Robust: immune to software disables

— Flexible: user programmable from

128 microseconds to 4 seconds at 12 MHz

® Dual Data Pointers

— Faster external memory access
® Software Reset

RAM ROM
(bytes) (bytes)
80C321 256 —
80C521 256 8K
80C541 256 16K

80C521 = 80C321 + 8K bytes ROM
80C541 = 80C321 + 16K bytes ROM

GENERAL DESCRIPTION

The 80C521 Family (80C521, 80C321, and 80C541) is a
fully instruction-set-compatible and pin-compatible en-
hancement of the industry-standard 80C51 architecture.
These products include a programmable Watchdog Timer
and Dual Data Pointers to enhance reliability and improve
performance.

The 80C521, 80C321, and 80!

1 mclude 256 bytes of

on-chip ROM.
A dedicated Watchdo
ESD, and software failure

special software and electrical isolation features For exam-
ple, it cannot be disabled by potentially corrupted software.

It is user programmable from 128 microseconds to 4
seconds at 12 MHz.

The Dual Data Pointers structure speeds access to external
memory by providing two identical 16-bit data pointers with
a fast switching mechanism. This overcomes a traditional
8051 limitation of only a single data pointer and can
improve performance of tasks such as block transfers by

consult the Software

A g
tolerance over packages with a single Vcc and Vss
connection.

SIMPLIFIED BLOCK DIAGRAM

FREQUENCY
REFERENCE

COUNTERS

. ROM :

OSCILLATOR 8K BYTES R TWO 16-8IT .
: & (80Cs21 only) 256 BYTES TIMEREVENT ,
. TIMING 16K BYTES COUNTERS !
N (80C541 only) N
‘ 1 I :
' 80C51 ﬁ :
) =Y WATCHDOG | -
' 1} I TIMER :
. PROGRAMMABLE .
. 64K-BYTE BUS SERIAL PORT :
. EXPANSION PROGRAMMABLE 10 + FULL DUPLEX .
) CONTROL UART !
. - SYNCHRONOUS .
. SHIFTER N
: INTERRUPTS @ .

INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS IN out
AND I/0 PINS
BD007216
Publication # Rev. Amendment
09136 C 80C521/80C321/80C541
Issue_Date: October 1989

8-1

3o

DETAILED BLOCK DIAGRAM

Poo=Po7 P20~ P27
STTTTT T T T I 1 N
|
1 |
|
|
t |
| |
| |
! RAM ADDR 2;” s PORT 0 PORT 2 8:0:18 !
: REGISTER * LATOH LATCH N l‘
| |
: |
|
| PROGRAM ADDR |
| REGSTER i
I ‘ |
i @ AN |
STACK BUFFER
: =il
| |
| PC |
| INCREMENTER I
| REGISTER |
| |
! PCON 'SCON TMOD TCON PROGRAM [
: THy Ty THy Ty COUNTER |
| SBUF (TX) | SBUF (AX) 3 P :
| NTERRUPT. SERIAL |
| oo ___1/\ oPTRO <::> :
T™NG |
AND |
p——
CONTROL o AN |
NSTRUCTION N—1 !
REGISTER i; — :
|
|
WATCHDOG |
T™ER !
l
|
|
|
/
_______________________________ 7
Pio-P17
BD004097

80C521/80C321/80C541

CONNECTION DIAGRAMS

Top View
DIPs PLCC
P10 1® 7 407 Ve
P[]z 38 [] po.o AD,
pz2[]s 3817] P01 ADy ta8z9 8833
Pa[]s 37| po2 ap, :‘:..>>3233
Pa [36] P03 ADy T TR A ST
s e 35] Po.4 AD, 4 °
P[] 34 [P05 ADg
pr[Js 33 [] Pos ADg
RsT (]9 32 P07 ADy
RXD P30 [10 N[&
>0 P31 [11 30 [ALe
iNTy P32 (] 12 20 [] PBEN
W, pa3 []13 28 [P27 Ay
To P34 [] 14 27 7 P28 A
Ty Pas] 26 [] pas Ay *
mn.‘:‘e 25:".“12 20 21 22 23 24 26 2¢ 27 28
BB P37 [17 24 [7] P23 Ay IR EEEEER T
XTAL,] 18 23[] P22 Ay 32:; PEd
XTAL; [10 22[7] P21 Ay CD009444
ves [] 20 217 P20 Ag
CD005554
Note: Pin 1 is marked for orientation.
LOGIC SYMBOL
v,,|]Vcc tnsr
XTALy
& (] - | — g
T s 1 et
- — =
& | -—
PSEN ——df — _
ALE ~——dl [~ E
RXD = -] — B
TXD e -— . -—
Wy — [— — | —| 2
NT) —— | O o] e —~—
= 1§ senll 1 Sene
Ty — -— e -—
[— —-— o -—
A -—— — T —
LS001324
80C521/80C321/80C541

8-3

ORDERING INFORMATION

Commodity

Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is

formed by a combination of: a. Temperature Range
b. Package Type
c. Device Number
d. Speed Option
e. Optional Processing

80C521 _ —

|
184

Valid Combinations
80C521
80C521-1
P, N 80C321
IP, IN 80C321-1
80C541

80C541-1

e. OPTIONAL PROCESSING
Blank = Standard processing

e

SPEED OPT!ON
Blank = 0.1 to 12 MHz
-1=0.1 to 16 MHz

o

. DEVICE NUMBER/DESCRIPTION
80C521/80C321/80C541
CMOS Single-Chip Microcontroller

b. PACKAGE TYPE
P = 40-Pin Plastic DIP (PD 040)
N = 44-Pin Plastic Leaded Chip Carrier (PL 044)

. TEMPERATURE RANGE
Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C)

Valid Combinations

Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid
combinations, to check on newly released valid combinations,
and to obtain additional data on AMD's standard military
grade products.

8-4

80C521/80C321/80C541

PIN DESCRIPTION

Port 0 (Bidirectional, Open Drain)
Port 0 is an open-drain bidirectional I/0 port. Pert 0 pins that
have 1s written to them float, and in that state can be used
as high-impedance inputs.

Port 0 is also the multiplexed Low-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting 1s. Port 0 also outputs the code bytes during
program verification in the 80C521. External puliups are
required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LSTTL
inputs. Port 1 pins that have 1s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 1 pins that are externally being
pulled Low will source current (I on the data sheet)
because of the internal puilups.

Port 1 also receives the Low-order address bytes during
program verification.

Port 2 (Bidirectional)
Port 2 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 2 output buffers can sink/source four LSTTL
inputs. Port 2 pins having 1s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 2 pins externally being pulled Low
will source current (lj|) because of the internal pullups.

Port 2 emits the High-order address byte during fetches
from external Program Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTR). In this application it uses strong internal pullups
when emitting 1s. During accesses to external data memory
that use 8-bit addresses (MOVX @Ri), Port 2 emits the
contents of the P2 Special Function Register. Port 2 also
receives the High-order address bits during ROM
verification.

Port 3 (Bidirectional)
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 3 output buffers can sink/source four LSTTL
inputs. Port 3 pins that have 1s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 3 pins externally being pulled
Low will source current (I;) because of the pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

P3o RxD (serial input port)

P31 TxD (serial output port)

P3.2 INTo (external interrupt 0)

P33 INT7 (external interrupt 1)

P34 To (Timer O external input)

P35 Ty (Timer 1 external input)

P3g WR (external Data Memory write strobe)
P37 RD (external Data Memory read strobe)

XTAL4

XTAL3

RST Reset (Input/Output, Active High)

A High on this pin (for two machine cycles while the
oscillator is running) resets the device. An internal diffused
resistor to Vgg permits power-on reset, using only an
external capacitor to Vcc.

Immediately prior to a Watchdog Reset or Software Reset,
this pin is pulled High for one state time. The internal pull-up
can be overdriven by an external driver capable of sinking/
sourcing 2.5 mA (see Figure 86 for possible circuit
configurations).

ALE Address Latch Enable (Output, Active High)

Address Latch Enable is the output pulse for latching the
Low byte of the address during accesses to external
memory.

In normal operation ALE is emitted at a constant rate of 1/6
the osciilator frequency, allowing use for external timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Output, Active Low)

PSEN is the read strobe to external Program Memory. When
the 80C521 is executing code from external program
memory, PSEN is activated twice each machine cycle,
except that two PSEN activations are skipped during each
access to external Data Memory. PSEN is not activated
during fetches from internal Program Memory.

EA External Access Enable (Input, Active Low)

EA must be externally held Low to enable the device to
fetch code from external Program Memory locations 0000H
to 1FFFH. If EA is held High, the device executes from
internal Program Memory unless the program counter
contains an address greater than 1FFFH.

The 80C521 internally latches the value of the EA pin at the
falling edge of the reset pulse on the RST pin during a
Hardware or Power-on Reset. Once latched, the EA value
cannot be changed except by a Hardware reset.
Crystal (Input)

Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

Crystal (Output)

Output from the inverting-oscillator amplifier.

Vcc Power Supply

Supply voltage during normal, idle, and power-down
operations.

Vss Circuit Ground

80C521/80C321/80C541

8-5

FUNCTIONAL DESCRIPTION

Program Memory

The 80C521 has 64K bytes of Program Memory space. The
lower 8K bytes (addresses 0000H to 1FFF) may reside on-
chip. Instructions residing at addresses beyond 1FFF will
always be fetched externally. When the External Access (EA)
pin is held Low, all code-fetch operations take place externally
to the 80C521.

Data Memory

The 80C521 can address 64K bytes of Data Memory external
to the chip. The MOVX instructions are used to access the
external Data Memory.

The internal data memory comprises three physically distinct
memory spaces. They are the lower 128 bytes of RAM, the

upper 128 bytes of RAM, and the 128-byte Special Function
Register (SFR) space. The lower 128 bytes of RAM can be
accessed through direct addressing (i.e., MOV addr, data), or
indirect addressing (i.e., MOV @ Ri). The upper 128 bytes of
RAM (locations 80H through FFH) can be accessed only
through indirect addressing modes. The Special Function
Register space, while physically distinct from the upper 128
bytes of RAM, shares addresses with the upper 128 bytes of
RAM. The SFR space may be accessed through direct
addressing modes only.

The first 32 bytes of RAM contain four register banks, each of
which contains eight general-purpose registers. The next 16
bytes (locations 20H through 2FH) contain 128 directly ad-
dressable bit locations. The stack may be located anywhere in
the internal RAM space and may be up to 256 bytes in length.

SPECIAL FUNCTION

REGISTER MAP

Addr Default After
(HEX) Symbol Name Power-On Reset
*. 80 PO Port 0 11111111
81 SP Stack Pointer 00000111
82 DPL Data Pointer Low 00000000
83 DPH Data Pointer High 00000000
+ 84 DPL1 Data Pointer Low 1 00000000
+85 DPH1 Data Pointer High 1 00000000
+ 86 DPS Data Pointer Selection 00000000
87 PCON Power Control 0XXX0000
* 88 TCON Timer/Counter Control 00000000
89 TMOD Timer/Counter Mode Control 00000000
8A TLO Timer/Counter 0 Low Byte 00000000
8B TLA Timer/Counter 1 Low Byte 00000000
8C THO Timer/Counter 0 High Byte 00000000
8D TH1 Timer/Counter 1 High Byte 00000000
* 90 P1 Port 1 11111111
* 98 SCON Serial Control 00000000
99 SBUF Serial Data Buffer Indeterminate
* A0 P2 Port 2 11111111
* A8 IE Interrupt Enable Control 0XX00000
+ A9 wWDS Watchdog Selection 00000000
+ AA WDK Watchdog Key 00000000
* BO P3 Port 3 11111111
* B8 IP Interrupt Priority Control XXX00000
* DO PSW Program Status Word 00000000
* EO ACC Accumulator 00000000
* FO B B Register 00000000

*

Bit Addressable

+

New SFRs defined on the 80C521/80C321

8-6

80C521/80C321/80C541

Basic Timing Definitions

Instructions in the 8051 family execute in either one, two, or
four machine cycles. A machine cycle comprises six state
times with each state made up of two clock cycles; thus, a
machine cycle lasts 12 clock cycles. With an external oscilla-
tor running at 12 MHz, a machine cycle lasts 1 us. At 16 MHz,
a machine cycle lasts 750 ns.

Reset Operation

The 80C521/80C321 may be reset by four different methods:
(1) Power-On Reset, (2) Hardware Reset, (3) Watchdog Reset,
and (4) Software Reset.

1. Power-On Reset occurs when the RST pin is wired to Vcc
using an external capacitor, and Vcc is activated.

2. Hardware Reset occurs when the oscillator is running and
the RST pin is held High for two or more machine cycles.

3. Watchdog Reset occurs when the count value of the
Watchdog Timer is allowed to exceed the programmed vaiue,
resulting in an overflow signal that resets the chip in two
machine cycles.

4. Software Reset occurs when the software writes a keyed
sequence to the key register of the Watchdog Timer. This
causes a Watchdog Reset to be immediately generated.

After Power-On Reset, the SFRs have the values indicated in
the Special Function Register Map Section, and the contents
of the internal RAM are undefined. Hardware Reset is the
same as Power-On Reset except that the contents of the
internal RAM are preserved. A Hardware Reset has priority
over a Watchdog Reset or a Software Reset. The Watchdog
Reset puts the 80C521 into the same state as the Hardware
Reset except that the Reset Cause (RC) bit in the Watchdog
Selection (WDS) register is set to a 1. The Software Reset is
functionally equivalent to the Watchdog Reset.

Watchdog Timer

The Watchdog Timer (WDT) is a specially designed timer unit
that will reset the chip upon reaching a pre-programmed time
interval. It operates independently of the two general purpose
timer/counters and is dedicated specifically to the watchdog
function. The Watchdog Timer allows safe recovery from
problems resulting from unexpected input conditions, external
events, or programming anomalies.

The WDT is disabled following any reset. While disabled, the
WDT time interval may be programmed. The WDT is enabled
by a sequence of two write operations.

Once enabled, the WDT cannot be stopped (i.e., disabled)
except by one of the four Reset types described in the last
section. Furthermore, while the WDT is enabled, the WDT time
interval cannot be modified. The WDT, however, may be
cleared by software at any time with the same sequence of
two write operations. The clearing operation causes the
present count of the WDT to be set to zero, but it does not
stop the WDT from incrementing.

If the count in the WDT ever reaches the pre-programmed
value, the WDT will overflow, resetting the chip in two machine
cycles. This is a Watchdog Reset. Additionally, if a system
error condition is discovered, software may intentionally gen-
erate an immediate reset via the WDT, using a special
sequence of write operations. This is a Software Reset.

A Watchdog Reset or Software Reset will set a special
"cause'' bit, allowing differentiation between these two Reset
types and the Hardware or Power-On Reset types. Neither
Watchdog Reset nor the Software Reset modify the contents
of the internal RAM. The Watchdog Reset will cause the RST
pin to be pulled High during S2P1 and S2P2 of the first cycle of
the two-cycle reset, providing a hardware indication that a
reset is imminent.

Two 8-bit Special Function Registers are associated with the
WDT. They are as follows:

Watchdog Selection (WDS) — Address: A9 (Hex)
Watchdog Key (WDK) — Address: AA (Hex)
Watchdog Selection (WDS) — Address: A9H

The Watchdog Selection register allows the time interval of
the WDT to be programmed and retains the cause of the most
recent reset. This register is Read/Write, but its contents
cannot be changed once the WDT has been enabled. Its
default value after a Hardware or Power-On Reset = 00H. Its
default value after a Watchdog Reset or Software Re-
set = 80H. This is the only register on the 80C521 whose
initialization value differs between the two reset groups.

(MSB) (LSB)
[re] - J7v] - [era]pr2]pTi]PT0 |
7 6 5 4 3 2 1 0

Bits 3 -0 — Programmed Time (PT3-PT0)

The value contained in these bits at the time the Watchdog
Timer is enabled determines the time interval of the WDT. The
time interval is a multiple of the input clock period. The times
are decoded in the following table.

Programmable Watchdog Timing Intervals

PT3-PTO 12 MHz 16 MHz Clock Divide Ratio
0 0000 128 us 96 us 1536
1 0001 256 us 192 us 3072
2 0010 512 us 384 us 6144
3 0011 1.024 ms 768 us 12288
4 0100 2.048 ms 1.536 ms 24576
5 0101 4.096 ms 3.072 ms 49152
6 0110 8.192 ms 6.144 ms 98304
7 0111 16.384 ms 12.288 ms 196608
8 1000 32.768 ms 24.576 ms 393216
9 1001 65.536 ms 49.152 ms 786432
A 1010 131.072 ms 98.304 ms 1572864
B 1011 262.144 ms 196.608 ms 3145728
C 1160 524.288 ms 393.216 ms 6291456
D 1101 1.049 sec 786.432 ms 12582912
E 1110 2.097 sec 1.573 sec 25165824
F 1111 4.194 sec 3.146 sec 50331648

80C521/80C321/80C541

8-7

If the Programmed Time bits are read while the WDT is
disabled, they will show the last value written. Once the WDT
is enabled, these bits will show the programmed time of the
WDT and cannot be modified.

Bit 4
Reserved. Will return an unidentified value when read.
Bit 5 — Timer Verification (TV)

This bit reflects Bit 11 of the internal counter within the
Watchdog Timer. It will toggle every 4.096 ms at 12 MHz. This
bit is Read-only.

Bit 6
Reserved. Will return an unidentified value when read.
Bit 7 — Reset Cause (RC)

The Reset Cause bit indicates the cause of the last reset of
the 80C521. If a Power-On or Hardware Reset occurs, the bit
is set to a 0 by the reset circuitry. If a Watchdog or Software
Reset occurs, the bit is set to a 1 by the reset circuitry. Like the
Programmed Time bits, this bit may not be modified once the
WDT is enabled. Writing this bit does not affect any chip
function.

Watchdog Key (WDK)— Address: AAH

This register controls the enabling and clearing of the Watch-
dog Timer. The writing of an A5H followed by the writing of a
5AH to this register enables the WDT to begin incrementing.
It is not a requirement that the writes be on consecutive
instructions, thus interrupts do not have to be disabled. Once
the WDT is enabled, it may be cleared at any time by the
writing of the same sequence. The clearing operation causes
the present count of the WDT to be cleared, but does not stop
the WDT from incrementing.

This is a Write-only register. Read operations are not defined
and will not affect the WDT circuitry.
(MSB) (LSB)

L I T T T T T 7]

7 6 5 4 3 2 1 0

The enabling/clearing operation of the Watchdog Timer is
accomplished by writing a keyed sequence of values to the
WDK register. The Keyed Sequence is composed of two
stages (see Figure 1).

HARDWARE

L STAGE

WAIT FOR A WRITE TOWDK
N

€S

WAIT FOR A WRITE TO WDK

AL
YES N
. STAGE:
o .

ENABLEICLEAR
WATCHDOG TIMER

NO

GENERATED
BD007220

Figure 1. WDT Keyed Sequence Flowchart

The Keyed Sequence is in Stage 1 after all forms of reset, or
following any Watchdog enable or clear operation. In Stage 1
all values written to the WDK register are ignored except A5H.
An A5H causes the Keyed Sequence to enter Stage 2.

Once Stage 2 is entered, the next write to the WDK register
prompts one of the following actions: (1) If the next write is
again an A5H, the Keyed Sequence remains in Stage 2; (2) If
the next write is a 5AH, the WDT is enabled/cleared, and the
Keyed Sequence reenters Stage 1; or, (3) If the next write is
any other value, a Software Reset via the WDT is generated.

Example of Write Operations to WDK:
Write
1st 2nd Action Taken After Second Write
11 18 No action taken, Keyed Sequence
still in Stage 1
A5 A5 Keyed Sequence enters Stage 2 and
remains there
A5 5A WDT is enabled/cleared, Sequence
reenters Stage 1
A5 11 Software Reset occurs via the WDT

The two-stage feature, together with the Software Reset,
greatly reduces the chance of an instruction sequence acci-
dentally clearing the Watchdog Timer. Furthermore, while still
allowing a Software Reset to be initiated, the two-stage
feature reduces the chance of unintentionally generating a
Software Reset.

8-8

80C521/80C321/80C541

Software Reset

A Software Reset may be accomplished through the Watch-
dog Timer. If an A5H is written to the Watchdog Key (WDK)
register, followed by the write of a value other than ASH or
5AH, a Software Reset will be generated. This software-
generated Watchdog Reset occurs regardless of whether or
not the Watchdog Timer was previously enabled.

After the second value is written to the WDK register, program
execution continues for one machine cycle before the reset
operation begins. During S2P1 and S2P2 of this last machine
cycle, the RST pin is pulled High (see Figure 6). The reset
operation lasts two machine cycles and does not modify the
contents of the internal RAM.

The Software Reset is functionally equivalent to the Watchdog
Reset. For instance, the Reset Cause bit in WDS will be set to
1, indicating a Watchdog Reset occurred (see the Watchdog
Timer section for more details).

The following code may be used to generate a Software
Reset.

MOV WDK,#A5H ; Write A5 (Hex) to WDK

MOV WDK, # 11H ; Write 11 (Hex) to WDK
Software Reset generated via WDT

Dual Data Pointers

The Dual Data Pointer structure is the means by which the
80C521 family may specify the address of an external Data
Memory location. The Dual Data Pointer structure consists of
two 16-bit registers that address external memory, and a
single 8-bit register that allows the program code to selectively
switch between them. They are located in the Special Func-
tion Register space at the following addresses:

82H Data Pointer Low
83H Data Pointer High

~(DPL)

~(OPH) l Data Pointer 0 (DPTRO)

84H Data Pointer Low 1
85H Data Pointer High 1
86H Data Pointer Selection

~(DPL1)
~(DPH1)
~(DPS)

; Data Pointer 1 (DPTR1)

Data Pointer 0 (DPTRO) is the original data pointer on the
standard 80C51 (formerly referred to as DPTR). Data Pointer 1
(DPTR1) is an additional data pointer with identical character-
istics. Instructions that refer to DPTR refer to the data pointer
that is currently selected in the Data Pointer Selection (DPS)
register. The six instructions that reference DPTR are as
follows:

INC DPTR ;Increments the data pointer by 1
MOV DPTR, ;Loads DPTR with a

#data16 16-bit constant

MOVC A, ;Move code byte relative to DPTR
@A + DPTR to Acc

MOVX A, @DPTR ;Move external RAM (16-bit

address) to Acc

;Move Acc to external RAM
(16-bit address)

;Jump indirect relative to DPTR

MOVX @DPTR, A

JMP @A + DPTR

It is also possible to access each data pointer on a byte-by-
byte basis by specifying its low or high byte in an instruction
that accesses the Special Function Registers. These instruc-
tions can be executed at any time regardless of which of the

two data pointers is currently selected. Three examples are as
follows:

MOV DPH,R3 ;Move the contents of Register 3 into
DPH

MOV A,DPL1 ;Move the contents of DPL1 into the
Acc

PUSH DPH1 ;Push the contents of DPH1 onto the
stack

The Dual Data Pointer structure saves both time and code
space by eliminating the need for frequent loading and
unloading of a single data pointer. For instance, block move
operations in external memory can be more efficiently imple-
mented by using DPTRO as the source address, and DPTR1
as the destination address. The Dual Data Pointer structure
enhances this operation considerably.

Data Pointer Selection (DPS) — Address: 86H

This register determines which of the two data pointers is
currently selected. Once a data pointer is selected, the six
DPTR instructions refer only and always to that data pointer
until another data pointer is selected. Upon reset, the default
data pointer (DPTRO) will be selected, thus retaining compati-
bility with existing 8051-family devices. The switch between
data pointers may be accomplished with a single cycle
instruction (such as: INC DPS or MOV DPS,A). The default
value at reset = 00H. This is a Read/Write register.

(MSB) (LSB)
[oJoJoJoJoJo]o [sEwo]
7 6 5 4 3 2 1 0

Bit 0 — Select 0 (SELO)

If this bit is 0, the original data pointer, DPTRO, is selected. If
this bit is 1, DPTR1 is selected. This bit may be written by
software at any time. When read, its current value is
presented.

Bits 7 -1

Reserved. Will return 0 when read.

Data Pointer Low (DPL) — Address: 82H

DPL is a Read/Write register that contains the low byte of
Data Pointer 0. It may be accessed at any time with an
instruction that specifies a direct byte as a source of destina-
tion. However, SELO in the DPS register must be set to 0

before any of the six explicit DPTR instructions will access this
register. The default at reset = O0H.

(MSB) (LSB)

N N N N N A

7 6 5 4 3 2 1 0

Data Pointer High (DPH) — Address: 83H

DPH is a Read/Write register that contains the high byte of
Data Pointer 0. It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina-
tion. However, SELO in the DPS register must be set to 0
before any of the six explicit DPTR instructions will access this
register. The default at reset = O0H.

(MSB) (LSB)

N N N N O A

7 6 5 4 3 2 1 0

80C521/80C321/80C541

8-9

Data Pointer Low 1 (DPL1) — Address: 84H

DPL1 is a Read/Write register that contains the low byte of
Data Pointer 1. It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina-
tion. However, SELQ in the DPS register must be set to 1
before any of the six explicit DPTR instructions will access this
register. The default at reset = 00H.

(MSB) (LSB)

L[T T T T T 11
7 6 5 4 3 2 1 0
Data Pointer High 1 (DPH1) — Address: 85H

DPH1 is a Read/Write register that contains the high byte of
Data Pointer 1. It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina-
tion. However, SELO in the DPS register must be set to 1
before any of the six explicit DPTR instructions will access this
register. The default at reset = O0OH.

(MSB) (LSB)
I I I I
7 6 5 4 3 2 1 0
Dual Data Pointer Example
To load both data pointers after reset:
Method 1:

MOV DPL ,#data8
MOV DPH , #data8

;load low byte of DPTRO

;load high byte of DPTRO

MOV DPL1, #data8 ;load low byte of DPTR1

MOV DPH1, # data8 ;load high byte of DPTR1
(Data Pointer 0 is still selected.)

Method 2:

MOV ;load DPTRO with 16-bit const.
DPTR, #data16

INC DPS ;switch data pointers

MOV ;load DPTR1 with 16-bit const.
DPTR, #data16

(Data Pointer 1 is now selected.)

Oscillator Characteristics

XTAL1 and XTAL are the input and output, respectively, of an
inverting amplifier which is configured for use as an on-chip
oscillator (see Figure 2). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL{
should be driven while XTAL3 is left unconnected (see Figure
3). There are no requirements on the duty cycle of the external
clock signal since the input to the internal clocking circuitry is
through a divide-by-two flip-flop, but minimum and maximum
High and Low times specified on the data sheet must be
observed.

_.E N——] XTAL,

O
{—[—— xTAL 4

Vss
—_—

i}

TC003411
Figure 2. Crystal Oscillator

——IXTAL,
EXTERNAL
OSCILLATOR XTAL4
SIGNAL

[i=

TC003392
Note: Different from NMOS 8051
Figure 3. External Drive Configuration

Idle and Power-Down Operation

Figure 4 shows the internal operation of the Idle and Power-
Down circuitry. Power-Down operation disconnects the clock
source from all internal chip circuitry. Idle mode operation
allows the interrupt, serial port, timers, and watchdog circuitry
to continue to function while the CPU is stopped. If the
Watchdog Timer is enabled, Power-Down operation is not
possible.

These special modes are activated by software via the Special
Function Register, PCON (Table 1). Its hardware address is
87H; PCON is not bit-addressable.

If 1s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is 0XXX0000.

[

XTALz XTAL4

TC003382

Figure 4. Idle and Power-Down Hardware

80C521/80C321/80C541

TABLE 1. PCON (Power Control Register)

(MSB) (LSB)

ISMODI - l - l - JGF1|GFO|PD‘IDLJ
Symbol | Position Name and Description
SMOD PCON.7 Double-baud-rate bit. When set to a
1, the baud rate is doubled when
the serial port is being used in
either modes 1, 2, or 3.
- PCON.6 (Reserved)
- PCON.5 (Reserved)
- PCON.4 (Reserved)
GF1 PCON.3 General-purpose flag bit
GFo0 PCON.2 General-purpose flag bit
PD PCON.1 Power-Down bit. Setting this bit
activates power-down operation.
IDL PCON.O Idle-mode bit. Setting this bit
activates idle-mode operation.
Idle Mode

The instruction that sets PCON.O is the last instruction
executed in the normal operating mode before the Idle mode
is activated. Once in the Idle mode, the CPU status is
preserved in its entirety: the Stack Pointer, Program Counter,
Program Status Word, Accumulator, RAM, and all other
registers in the 80C521 maintain their data during Idle. Table 2
describes the status of the external pins during Idle mode.

There are three possible ways to terminate the Idle mode.
Activation of any enabled interrupt will cause PCON.O to be
cleared by hardware, terminating the Idle mode. The interrupt
is serviced, and following RETI, the next instruction to be
executed will be the one following the instruction that wrote a
1 to PCON.O.

The flag bits GFO and GF1 may be used to determine whether
the interrupt was received during normal execution or during
the Idle mode. For example, the instruction that writes to
PCON.O can also set or clear one or both flag bits. When Idle
mode is terminated by an enabled interrupt, the service routine
can examine the status of the flag bits.

The second way of terminating the Idle mode is with a
Hardware Reset.

The third way of terminating the Idle mode is with the
Watchdog Timer. If the WDT is not enabled, then it has no
effect on subsequent Idle mode operations. If the WDT is
enabled before Idle mode is entered, it will continue to
increment in the normal fashion. If the WDT overflows, the
80C521 will experience a Watchdog Reset and Idle mode will
be terminated. If Idle mode is terminated by any method other
than a reset, the Watchdog Timer will continue to run.

Power-Down Mode

The instruction that sets PCON.1 is the last executed prior to
going into Power-Down. Once in Power-Down, the oscillator is
stopped. The contents of the on-chip RAM are preserved. The
Special Function Registers are saved until a Hardware Reset
is generated. A hardware reset is the only way of exiting the
Power-Down mode.

Power-Down mode cannot be entered while the Watchdog
Timer is enabled. If a write of the value 1 is attempted into the
PD bit of the PCON register, its value will remain 0, and no
Power-Down operation will take place. To enter Power-Down
mode, the Watchdog Timer must first be disabled via a
Hardware Reset, Software Reset, or Watchdog Reset. After
reset, the Watchdog Timer is disabled, allowing Power-Down
mode to be entered.

In the Power-Down mode, Vcc may be lowered to minimize
circuit power consumption. Care must be taken to ensure the
voltage is not reduced until the Power-Down mode is entered,
and that the voltage is restored before the Hardware Reset is
applied. Hardware Reset frees the oscillator and should not be
released until the oscillator has restarted and stabilized.

Table 2 describes the status of the external pins while in the
Power-Down mode. It should be noted that if the Power-Down
mode is activated while in external program memory, the port
data that is held in the Special Function Register P2 is
restored to Port 2. If the data is a 1, the port pin is held High
during the Power-Down mode by the strong pullup, P, shown
in Figure 5.

80C521 1/0 Ports

The I/0 port drive of the 80C521 is similar to the 8051. The
1/0 buffers for Ports 1, 2, and 3 are implemented as shown in
Figure 5.

When the port latch contains a 0, all pFETS in Figure 5 are off
while the nFET is turned on. When the port latch makes a 0-to-
1 transition, the nFET turns off. The strong pullup pFET, P4,
turns on for two oscillator periods, pulling the output High very
rapidly. As the output line is drawn High, pFET P3 turns on
through the inverter to supply the oy source current. This
inverter and P3 form a latch that holds the 1 and is supported
by Pa.

When Port 2 is used as an address port, for access to external
program or data memory, any address bit that contains a 1 will
have its strong pullup turned on for the entire duration of the
external memory access.

When an 170 pin on Ports 1, 2, or 3 is used as an input, the
user should be aware that the external circuit must sink
current during the logical 1-to-0 transition. The maximum sink
current is specified as |t under the D.C. specifications. When
the input goes below approximately 2 V, P3 turns off to save
Icc current. Note, when returning to a logical 1, P2 is the only
internal pullup that is on. This will result in a slow rise time if
the user's circuit does not force the input line High.

TABLE 2. STATUS OF THE EXTERNAL PINS DURING IDLE AND POWER-DOWN MODES

Mode Program Memory | ALE | PSEN PORTO PORT1 PORT2 PORT3
Idle Internal 1 1 Port Data Port Data Port Data Port Data
Idle External 1 1 Floating Port Data Address Port Data

Power-Down Internal (o] 0 Port Data Port Data Port Data Port Data
Power-Down External 0 0 Floating Port Data Port Data Port Data
80C521/80C321/80C541

208C. PERIODS
4] [i Fz[—| P3
PORT
r"| r -
§ D- ==
FROM PORT I
LATCH
INPUT
DATA
READ
PORY PIN

TC003401

Figure 5. 1/0 Buffers in the 80C521 (Ports 1, 2, 3)

Vee Vee
. L < |
10 uF == Vee 10 uF Watchdog Vee
or Software
Reset
80C525 Output 80C525
RST WA RST
L 2kQ
83ka g 50 kQ
(optional)
Vss Vss
TC004320
Standard (80C51) Reset Circuit Watchdog Reset Circuit
Neither a Watchdog nor a Software Reset will affect the The reset circuit shown above may be used to sense a
Standard reset circuitry, nor can they be sensed by the Watchdog or Software Reset. For Voo =5 V, the driver
Standard (80C51) reset circuitry. output must be able to source/sink 2.5 mA.

Figure 6. RESET Configurations

8-12 80C521/80C321/80C541

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C
Voltage on Any

Pin 10 V88 .covviivviiiis
Voltage on Vg to Vgs

Power Dissipation

-0.5 V to Vg +0.5 V
-05V 1o 65 V

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device

OPERATING

Commercial (C) Devices
Temperature (TA).....cocvvveeeviiiiiiiiiiiiiinnnns 0 to +70°C
Supply Voltage (Vco) - +45V to +55V
Ground (VSS) .. oovvvveriniiiiiiieiiri e oV

Industrial () Devices
Temperature (Ta)..... ...=40 to +85°C
Supply Voitage (Vce) . +45V to +55 V
GrOUNG (VES) - nererverrarieeeeaeaeeersinnnneeeraieneaeanenns oV

RANGES

Operating ranges define those limits between which the

reliability.

functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range

Parameter Parameter
Symbol Description Test Conditions Min. Max. Unit
ViL input Low Voitage (Except EA) -0.5 0.2 Vog-0.1 v
ViL1 Input Low Voltage (EA) -05 0.2 Vgc-0.3 v
VIH Input High Voltage (Except XTAL4, RST) 0.2 Vcc +0.9 Vcc +0.5 \
ViH1 Input High Voitage (XTALy RST) 0.7 Vco Vee +0.5 v
VoL Output Low Voitage (Ports 1, 2, 3) loL =16 mA (Note 1) 0.45 Vv
VoLt Output Low Volitage (Port 0, ALE, PSEN) loL =3.2 mA (Note 1) 0.45 \
loH = =60 pA, Vcc=5 V£10% 2.4 \
VOH Output High Voitage (Ports 1, 2, 3) loH =-25 pA 0.75 Voo v
loH =-10 pA 0.9 Vcc v
loH =-800 wA, Vcc=5 V+10% 24 \%
Vows | Quou et Velage Cor g, op =560 578 Vg v
loH =-80 pA (Note 2) 0.9 Vco \Y
liL Logical 0 Input Current (Ports 1, 2, 3) VIN =045 V -50 HA
ITL Logical 1 to 0 Transition Current (Ports 1, 2, 3) ViN=2V -850 HA
u Input Leakage Current (Port 0, EA) 0.45<VIN< VcC +10 MA
RRST Reset Pulldown Resistor 50 150 kQ
ClO Pin Capacitance Test Freq. =1 MHz, Ta =25°C 10 pF
IPD Power-Down Current Vecc=2 to 6 V (Note 3) 50 HA
MAXIMUM Icc (mA)
Operating (Note 4) Idle (Note 5)
Freq. Vgc 45V 5V 55 V 45V 5V 55V
0.1 MHz 22 31 38 0.7 0.9 14
3.5 MHz 6 8 10 1.5 2 3
8.0 MHz 11 14 18 25 3.5 5
12 MHz 15 20 25 3.5 5 6
16 MHz 19 25 32 4.5 6.5 8.5
Notes: 1. Capacitive loading on ports may cause spurious noise pulses to be superimposed on the Vo S of ALE and other ports.
The noise is due to external bus capacitance discharging into the port pins when these pins make 1-to-0 transitions
during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed
0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt-
Trigger STROBE input. This note pertains to dual-in-line packages only. The additional Vcc and Vgg connections on the
PLCC package from AMD removes this design consideration.
2. Capacitive loading on ports may cause the Vo on ALE and PSEN to momentarily fall below the 0.9 Vgg specification

w

when the address bits are stabilizing. This note pertains to dual-in-line packages only. The additional Voc and Vgs
connections on the PLCC package from AMD remove this design consideration.

. Power-Down Icc is measured with all output pins disconnected: EA = Port 0 = Vggo; XTALp NC; RST = Vgs.
. lcc is measured with all output pins disconnected; XTAL¢ driven with TCLCH, TCHCL =5 ns, V| =Vgg+0.5 V,

ViH = Voo - 0.5 V; XTALp NC; EA = RST = Port 0 = Vgc. Typical values are approximately 50% lower.
lcc would be slightly higher if a crystal oscillator was used.

. Idie Igc is measured with all output pins disconnected; XTAL¢ driven with TCLCH, TCHCL =5 ns, V| =Vgg + 0.5V,

ViH = Vcoc-0.5 V; XTALs NC; Port 0 =Vcc; EA=RST =Vgg, and the Watchdog Timer disabled.

80C521/80C321/80C541

SWITCHING CHARACTERISTICS over operating range (C_ for Port 0, ALE and PSEN Outputs = 100 pF;
Cy for All Other Outputs = 80 pF)
16-MHz Osc. | 12-MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. | Max. Min. Max. Min. Max. Unit
EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS
1/TCLCL Oscillator Frequency 0.1 16 MHz
TLHLL ALE Pulse Width 85 127 2TCLCL - 40 ns
TAVLL Address Valid to ALE Low 7 28 TCLCL - 55 ns
TLLAX Address Hold After ALE Low 27 48 TCLCL-35 ns
TLLIV ALE Low to Valid Instr. In 150 234 4TCLCL - 100 ns
TLLPL ALE Low to PSEN Low 22 43 TCLCL - 40 ns
TPLPH PSEN Pulse Width 142 205 3TCLCL-45 ns
TPLIV PSEN Low to Valid Instr. In 83 145 3TCLCL - 105 ns
TPXIX Input Instr. Hold After PSEN 0 0 0 ns
TPXIZ Input Instr. Float After PSEN 38 59 TCLCL-25 ns
TAVIV Address to Valid Instr. In 208 312 5TCLCL - 105 ns
TPLAZ PSEN Low to Address Float 10 10 10 ns
TRLRH RD Pulse Width 275 400 6TCLCL - 100 ns
TWLWH WR Pulse Width 275 400 6TCLCL - 100 ns
TRLDV RD Low to Valid Data In 148 252 5TCLCL - 165 ns
TRHDX Data Hold After RD 0 0 0 ns
TRHDZ Data Float After RD 55 97 2TCLCL - 70 ns
TLLDV ALE Low to Valid Data in 350 517 8TCLCL - 150 ns
TAVDV Address to Valid Data In 398 585 9TCLCL - 165 ns
TLLWL ALE Low to RD or WR Low 137 238 200 300 3TCLCL-50 | 3TCLCL + 50 ns
TAVWL Address Valid to Read or Write Low 120 203 4TCLCL - 130 ns
TQVWX Data Valid to WR Transition 2 23 TCLCL - 60 ns
TQVWH Valid Data to Write High 287 433 7TCLCL -150 ns
TWHQX Data Hold After WR 12 33 TCLCL - 50 ns
TRLAZ RD Low to Address Float 0 0 0 ns
TWHLH RD or WR High to ALE High 22 103 43 123 TCLCL-40 | TCLCL +40 ns
8-14 80C521/80C321/80C541

SWITCHING WAVEFORMS

——TLHLL—

ALE / \

- |
TAVLL TPLPH
A T -

TLLIV

\ TPLIV
PSEN \
TPXIZ

TLLAX |=—=| =—TPLAZ TPXIX —=

e

!...

f INSTR
PORT 0 L ADg-AD7 X N

ADg-AD7 >_<

TAVIV

4
PORT2 y Ag-Ais X
\

Ag-A1s

WF021962
External Program Memory Read Cycle
TWHLH |e—e|
ALE / \ y
PSEN / \
TLLDV
—TLLWL — TRLRH
AD N /
—— TRLDV ——
TAVLL: —| TRHDZ
FTLLAX<] ~| [~ TRLAZ TRHDX—~ l—-
>,_<ﬁADo-A°7 \ /ADo-AD; ~eTh
PORTO FROM RI OR me s | DATAN FROM PCL N
TAVWL ADo-AD;
TAVDV
PORT 2 X P20-P27 OR Ag-Ajs FROM DPH X Ag-Ats FROM PCH

External Data Memory Read Cycle

WF020962

80C521/80C321/80C541

8-15

SWITCHING WAVEFORMS (continued)

TWHLH |+—|
ALE / \L

PSEN \ /
~—TLLWL TWLWH
WR /
TQVWX
TWHQX
TAVLL TLLAX TQVWH |
ADg-AD ADg-AD INSTR
PORT 0 FROM RI OR"DPL“ DATA out x XanM ngIN
TAVWL ———
PORT 2 X P20-P2.7 OR Ag-Aq5 FROM DPH X Ag-Aq5 FROM PCH
WF020932
External Data Memory Write Cycle
INSTRUCTION | © | 1 1 2 | I I e [A R |
ALE
Ja—TxLxL]
cLock m — M M r
TQUXH ft——er] ja=TxHOX |

OUTPUT DATA D QD D G XD A 4

o X X
7 ¢
WRITE TO SBUF TXHDV L—o‘ .I}q- TXHDX SET n

INPUT DATA Qo)X Xvauo)_ Xvauo) Xvauo)_ XvauoX_ KvaoX__Xvanox(__Xvao)
SET N
CLEAR RI
WF020951

Shift Register Timing Waveforms

80C521/80C321/80C541

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Unit
1/TCLCL Oscillator Frequency 0.1 16 MHz
TCHCX High Time 20 ns
TCLCX Low Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
Voc-05 "'""f 0.7 Voo W
045 V 02 Veg-01 \ e Tenex
TCLCX ——tegd , TCLCH
TCHCL TCLCL {
WF020911
External Clock Drive Waveform
SERIAL PORT TIMING—SHIFT REGISTER MODE
Test Conditions: Ta = 0°C to 70°C; Vcg=5 V #10%; Vgg=0 V; Load Capacitance = 80 pF
16-MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Unit
TXLXL Serial Port Clock Cycle Time 750 12TCLCL ns
TQVXH Output Data Setup to Clock Rising Edge 492 10TCLCL - 133 ns
TXHQX Output Data Hold After Clock Rising Edge 8 2TCLCL - 117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 492 10TCLCL - 133 ns
AC Testing
Vec-08 0.2 VoG +09 VLOAD+0.1 V Vim0 v
VL0AD TIMING REFERENGE Sale
0.2 Vcc -0.1 —04 POINTS v, v
045 V VLoAD-01 V oL +0-1
WF020901 WF020941

max. for a logic 0.

AC inputs during testing are driven at Vcc~0.5 for a logic 1and 0.45 V for a
logic 0. Timing measurements are made at V|4 min. for a logic 1 and V.

Input/Output Waveform

For timing purposes a port pin is no longer floating when a 100 mV change
from load voltage occurs, and begins to float when a 100 mV change from
the loaded Von/VoL level occurs. IgL/loH = +20 mA.

Float Waveform

80C521/80C321/80C541

READ CYCLE

CLOCK WAVEFORMS

INTERNAL ’ STATE 4 I STATE 5‘ STATE e‘ STATE 1| STATE 2| STATE 3 I STATE 4I STATE 5 I

cLock prlp2lpilpalelpzlpil prlpalpilpalpilpalpilee

XTAL 2

ALE
THESE SIGNALS ARE NOT
ACTIVATED DURING THE

EXTERNAL PROGRAM MEMORY FETGH EXECUTION OF A MOVX INSTRUCTION
PSEN
ADO-AD7 DATA, PCL OuT DATA| DATA PCL OUT
SAMPLED SAMPLED SAMPLED
FLOAT | FlOAT—> [——-FLOAT

AS_A15 ' INDICATES ADDRESS TRANSITIONS |

BN

J PCL OUT (EVEN IF PROGRAM

PCL OUT (F PROGRAM
MEMORY IS EXTERNAL)

RD 1) |
PCL OUT (IS PROGRAM
MEMORY IS EXTERNAL)
ADp-AD P Jorr]
0 7 Rl OUT SAMPLED
FLOAT
T |
WRITE CYCLE
WR |
MEMORY IS INTERNAL)
DPL OR RI
AD-AD; e OPLORA | .
je———— DATA OUT
PORT OPERATION
MOV PORT, SRC oLD DATA [NEW DATA
MOV DEST, P1
(INCLUDES INTO, INT1, TO, T1) z\f —,1—7_—-1_‘__
P1
L
SERIAL PORT SHIFT CLOCK ; P1 PIN SAMPLED PIN SAMPLED
o gl 1 o~
(MODE 0) "_ AXD SAMPLED Axp sampLeD —/

WF020923

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges
from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies
from output to output and component to component. Typically though (Ta = 25°C, fully loaded), RD and WR propagation delays are
approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

8-18 80C521/80C321/80C541

TABLE 3. 80C521/80C321/80C541 INSTRUCTION SET
Instructions That Affect Flag Setting* Interrupt Response Time: To finish execution of current
instruction, respond to the interrupt request and push the PC;
Instruction Flag Instruction Flag to vector to the first instruction of the interrupt service program
C OV AC c oV AC :;auures 38 to 81 oscillator periods (2.25 to 5.25 us at 16
ADD X X X CLRC o 2).
ADDC X X X CPLC X
suBB X X X ANLC, bit X
MUL (o] X ANL C,/bit X
DIV o X ORL C, bit X
DA X ORL G,/ b'F X *Note that operations on SFR byte address DOH or bit
RRC X MOV C, bit X addresses DO - D7H (i.e., the PSW or bits in the PSW) will also
RLC X CJINE X affect flag settings.
SETB C 1
DATA TRANSFER LOGIC (Continued)
Mnemonic Description Byte| Cyc | Mnemonic Description Byte| Cyc
MOV ARn Move register to Accumulator 1 1 ANL direct, # data AND immediate data to direct byte 3 2
MOV Adirect Move direct byte to Accumulator 2 1 ORL ARn OR register to Accumulator 1 1
MOV A @Ri Move indirect RAM to Accumulator 1 1 ORL A.direct OR direct byte to Accumulator 2 1
MOV A #data Move immediate data to Accumulator 2 1 ORL A.@Ri OR indirect RAM to Accumulator 1 1
MoV Rn,A Move Accumulator to register 1 1 ORL A, #data OR i i data to A or 2 1
MOV Rn,direct Move direct byte to register 2 2 ORL direct,A OR Accumulator to direct byte 2 1
MOV Rn, #data Move immediate data to register 2 1 ORL direct, # data OR immediate data to direct byte 3 2
MOV direct,A Move Accumulator to direct byte 2 1 XRL ARn Exclusive-OR register to Accumulator 1 1
MOV direct,Rn Move register to direct byte 2 2 XRL A, direct Exclusive-OR direct byte to Accumulator | 2 1
MOV direct,direct Move direct byte to direct byte 3 2 XAL A@Ri Exclusive-OR indirect RAM to 1 1
MOV direct,@Ri Move indirect RAM to direct byte 2 2 Accumulator
MOV direct, # data Move immediate data to direct byte 3 2 XRL A, #data Exclusive-OR immediate data to 2 1
MOV @RiA Move Accumulator to indirect RAM 1 1 Accumulator
MOV @Ri,direct Mode direct byte to indirect RAM 2 2 XAL direct,A Exciusive-OR Accumuiator to direct byte 2 1
MOV @Ri, # data Move immediate data to indirect RAM 2 1 XRL direct, #data Exclusive-OR immediate data to direct 3 2
MOV DPTR, #data16 | Move 16-bit constant to Data Pointer 3 2 CLR A Clear Accumulator 1 1
MOVC A @A +DPTR Move Code byte relative to DPTR to 1 2 CPL A Complement Accumulator 1 1
Accumulator RL A Rotate Accumulator Left 1 1
MOVC A@A+PC Move Code byte relative to PC to 1 2 RLC A Rotate Accumulator Left through Carry 1 1
Accumulator Flag
MOVX A@Ri Move External RAM (8-bit address) to 1 2 RR A Rotate Accumulator Right 1 1
Accumulator RRC A Rotate Accumulator Right through Carry 1 1
MOVX A @DPTR Move External RAM (16-bit address) to 1 2 Flag
Accumulator SWAP A Exchange nibbles within the 1 1
MOVX @RiA Move Accumulator to External RAM 1 2 Accumulator
(8-bit address)
MOVX @DPTR,A Move Accumulator to External RAM 1 2 ARITHMETIC
(16-bit address)
PUSH direct Push direct byte onto stack 2 2 Mnemonic Description Byte| Cyc
POP direct Pop direct byte off of stack 2 2
XCH ARn Exchange register with Accumulator 1 1 AR A i
XCH A direct Exchange direct byte with Accumulator 2 1 :gg A:di?ect Agg rdelgz:e:);‘oae ?:cxgﬂra':;;wr ; :
XCH A@Ri ﬁzg:f“"lﬂ:';’r‘d"“' RAM with 1 1 | ADD A@Ri Add indirect RAM to Accumulator 1 1
. . , . ADD A, #data Add i i data to Al I 2 1
XCHD A@Ri Exchange ":g"ec‘SHAM s least sig 1 1 ADDC ARn Add register to Accumulator with carry 1 1
nibble with A's LSN ADDC A direct Add direct byte to Accumulator with 2 1
Carry Flag
ADDC A@Ri Add indirect RAM and Carry Flag to 1 1
BOOLEAN VARIABLE MANIPULATION @ Acoumulator R
ADDC A, #data Add immediate data and C: Flag t 2 1
Mnemonic Description Byte| Cyc Accumulator arry riag to
SuBB ARn Subtract register from Accumulator with 1 1
CLR Cc Clear Carry Flag 1 1 Borrow
CLR bit Clear direct bit 2 1 SUBB Adirect Subtract direct byte from Accumulator 2 1
SETB C Set Carry Flag 1 1 with Borrow
SETB bit Set direct bit 2 1 SUBB A@Ri Subtract indirect RAM from Accumulator | 1 1
CPL Cc Complement Carry Flag 1 1 with Borrow
CPL bit Complement direct bit 2 1 | sUBB A #data Subtract immediate data from 2 1
ANL C,bit AND direct bit to Carry Flag 2 2 Accumulator with Borrow
ANL C,/bit AND complement of direct bit to Carry 2 2 INC A Increment Accumulator 1 1
ORL C,bit OR direct bit to Carry Flag 2 2 INC Rn Increment register 1 1
ORL C,/bit OR complement of direct bit to Carry 2 2 INC direct Increment direct byte 2 1
MOV Cbit Move direct bit to Carry Flag 2 1 INC @Ri Increment indirect RAM 1 1
MOV bitC Move Carry flag to direct bit 2 2 DEC A Decrement Accumulator 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 1
LOGIC DEC @Ri Decrement indirect RAM 1 1
INC DPTR Increment Data Pointer 1 2
N : MUL AB Multiply Accumulator times B 1 4
Mnemonic Description Byte| Cyc DIV AB Divide Accumulator by B 1 4
ANL ARn AND register to Accumulator 1 1 DA N Decimal Adjust Accumulator 1 1
ANL A direct AND direct byte to Accumulator 2 1
ANL A @Ri AND indirect RAM to Accumulator 1 1
ANL A, #data AND i i data to A 2 1
ANL direct,A AND Accumulator to direct byte 2 1
80C521/80C321/80C541 8-19

OTHER CONTROL TRANSFER (SUBROUTINE)
Mnemonic Description Byte| Cyc | Mnemonic Description Byte| Cyc
NOP No Operation 1 1 ACALL addri1 Absolute Subroutine Call 2 2
LCALL addr16 Long Subroutine Call 3 2
CONTROL TRANSFER (BRANCH) RET Return from Subroutine Call 1 2
m " P P RET! Return from Interrupt Call 1 2
nemonic Description yte| Cyv¢ MNot on Data Addressing Modes:
AJMP addr11 Absolute Jump 2 2 X i
LIMP addrié Long Jump 3 2 | Rn -Working register RO-R7 of the currently selected
SIMP rel Short Jump (relative addr) 2 2 Register bank.
JMP @A+ DPTR | Jump indirect relative to the DPTR | 1 2 | direct -128 internal RAM locations, any /O port, control, or
Jz rel Jump if Accumulator is zero 2 2 Special Function Registers.
JNZ el Jump if Accumulator is not zero 2 1 2 | @Ri -Indirect internal RAM location addressed by register
JC rel Jump if Carry Flag is set 2 2 RO or R1
INC el Jump if carry is not set 2 2 e y . M "
JB bit,rel Jump relative if direct bit is set 3 2 :gazam —?ebg.tconsm{“ 'tn‘?IUd'eg IS lnslr\;ctlon. 2 d 3 of
JNB bitrel Jump relative if direct bit is not set| 3 2 ata =16-bit constant Included as ytes an o
JBC bitrel Jump relative if direct bit is set, 3|2 | . instruction.))
then clear bit bit -128 software flags, any /0 pin, control, or status bit.
CJNE Adirect,rel Compare direct byte to 3 2 .
Accumulator and Jump i not Equal Notes on Program Addressing Modes:
CJNE A, #data,rel | Col e immediate to Accumulator | 3 2 —
am;n 5:,'.,,’,? n‘:‘i aEqu; © addr16 -Destination address for LCALL and LUMP may be
CJNE Rn,#datarel | Compare immediate to reg and 3 2 anywhere within the 64-kilobyte program memory
Jump if not Equal address space.
CJNE @Ri #datarel | Compare immediate to indirect 3 2 addr11 -Destination address for ACALL and AJMP will be
RAM and Jump if not Equal within the same 2-kilobyte page of program memory
DJNZ Rnyrel Decrement register and Jump if not| 2 | 2 as the first byte of the following instruction.
' zero)) rel -SJMP and all conditional jumps include as 8-bit
DJNZ directrel Decrement direct byte and Jump if | 3 2 offset by Range is +127, 128 bytes relative to first
not zero . N y
byte of the following instruction.
TABLE 4. INSTRUCTION OPCODES IN HEXADECIMAL ORDER
Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands
00 1 NOP 29 1 ADD AR1
01 2 AJMP Code addr 2A 1 ADD AR2
02 3 LJMP Code addr 2B 1 ADD AR3
03 1 RR A 2C 1 ADD AR4
04 1 INC A 2D 1 ADD AR5
05 2 INC Data addr 2E 1 ADD AR6
06 1 INC @RO 2F 1 ADD AR7
07 1 INC @R1 30 3 JNB Bit addr,code addr
08 1 INC RO 31 2 ACALL Code addr
09 1 INC R1 32 1 RET!
0A 1 INC R2 33 1 RLC A
oB 1 INC R3 34 2 ADDC A, #data
oC 1 INC R4 35 2 ADDC A,data addr
oD 1 INC R5 36 1 ADDC A,@RO
OE 1 INC R6 37 1 ADDC A,@R1
OF 1 INC R7 38 1 ADDC ARO
10 3 JBC Bit addr,code addr 39 1 ADDC AR1
1 2 ACALL Code addr 3A 1 ADDC AR2
12 3 LCALL Code addr 3B 1 ADDC AR3
13 1 RRC A 3C 1 ADDC AR4
14 1 DEC A 3D 1 ADDC AR5
15 2 DEC Data addr 3E 1 ADDC AR6
16 1 DEC @RO 3F 1 ADDC AR?7
17 1 DEC @R1 40 2 JC Code addr
18 1 DEC RO 41 2 AJMP Code addr
19 1 DEC R1 42 2 ORL Data addr,A
1A 1 DEC R2 43 3 ORL Data addr, #data
1B 1 DEC R3 44 2 ORL A, #data
1C 1 DEC R4 45 2 ORL A.data addr
1D 1 DEC R5 46 1 ORL A,.@RO
1E 1 DEC R6 47 1 ORL A,@R1
1F 1 DEC R7 48 1 ORL ARO
20 3 JB Bit addr,code addr 49 1 ORL AR1
21 2 AJMP Code addr 4A 1 ORL AR2
22 1 RET 4B 1 ORL AR3
23 1 RL A 4C 1 ORL AR4
24 2 ADD A, #data 4D 1 ORL AR5
25 2 ADD A,data addr 4E 1 ORL AR6
26 1 ADD , 4F 1 ORL AR7
27 1 ADD A @R1 50 2 JNC Code addr
28 1 ADD ARO 51 2 ACALL Code addr
8-20 80C521/80C321/80C541

Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands
52 2 ANL Data addr,A AA 2 MOV R2,data addr
53 3 ANL Data addr, #data AB 2 MOV R3.data addr
54 2 ANL A, #data AC 2 MOV R4,data addr
55 2 ANL A.data addr AD 2 MOV R5,data addr
56 1 ANL A ,@RO AE 2 MOV R6,data addr
57 1 ANL A @R1 AF 2 MOV R7,data addr
58 1 ANL A RO B0 2 ANL C,/bit addr
59 1 ANL AR1 B1 2 ACALL Code addr
5A 1 ANL AR2 B2 2 CPL Bit addr
58 1 ANL AR3 B3 1 CPL
5C 1 ANL AR4 B4 3 CJINE A, #data,code addr
5D 1 ANL AR5 B5 3 CINE A.data addr,code addr
5E 1 ANL AR6 B6 3 CJINE @RO, # data,code
5F 1 ANL AR7 addr
€0 2 Jz Code addr 87 3 CJNE @R1, #data,code
61 2 AJMP Code addr addr
62 2 XRL Data addr,A B8 3 CJNE RO, # data,code addr
63 3 XRL Data addr, # data B9 3 CJNE R1, #data,code addr
64 2 XRL A, #data BA 3 CJNE R2, #data,code addr
65 2 XRL A,data addr BB 3 CINE RS, #data,code addr
66 1 XRAL A,@RO BC 3 CJINE R4, # data,code addr
67 1 XRL A @R1 8D 3 CINE RS, #data,code addr
68 1 XRL ARO BE 3 CINE R6, # data,code addr
69 1 XRL AR1 BF 3 CJNE R7, #data,code addr
B6A 1 XRL AR2 co 2 PUSH Data addr
68 1 XRL AR3 C1 2 AJMP Code addr
6C 1 XRL AR4 Cc2 2 CLR Bit addr
6D 1 XRL AR5 C3 1 CLR C
6E 1 XRL A.R6 Ca 1 SWAP A
6F 1 XRL AR7 C5 2 XCH A,data addr
70 2 JNZ Code addr cé 1 XCH A,@RO
71 2 ACALL Code addr Cc7 1 XCH A .@R1
72 2 ORL C.bit addr c8 1 XCH A RO
73 1 JMP @A +DPTR [ei¢] 1 XCH AR1
74 2 MOV A, #data CA 1 XCH AR2
75 3 MOV Data addr, #data cB 1 XCH AR3
76 2 MOV @RO, #data CcC 1 XCH AR4
77 2 MOV @R1,#data CD 1 XCH AR5
78 2 MOV RO, # data CE 1 XCH A.R6
79 2 MOV R1,#data CF 1 XCH AR7
7A 2 MOV R2, #data DO 2 POP Data addr
7B 2 MOV R3, #data D1 2 ACALL Code addr
7C 2 MOV R4, #data D2 2 SETB Bit addr
7D 2 MOV RS, #data D3 1 SETB C
7E 2 MOV R6, # data D4 1 DA A
7F 2 MOV R7, #data D5 3 DJNZ Data addr,code addr
80 2 SIMP Code addr D6 1 XCHD A,@RO
81 2 AJMP Code addr D7 1 XCHD A,@R1
82 2 ANL C,bit addr D8 2 DINZ RO,code addr
83 1 MOVC A @A +PC DS 2 DJINZ R1,code addr
84 1 DIv AB DA 2 DJNZ R2,code addr
85 3 MOV Data addr,data addr DB 2 DJINZ R3,code addr
86 2 MOV Data addr,@RO DC 2 DJNZ R4,code addr
87 2 MOV Data addr,@R1 DD 2 DJINZ R5,code addr
88 2 MOV Data addr,RO DE 2 DJINZ R6,code addr
89 2 MOV Data addr,R1 DF 2 DINZ R7,code addr
8A 2 MoV Data addr,R2 EO 1 MOVX A,@DPTR
&8 2 MoV Data addr,R3 €1 2 Admp Code addr
8C 2 MOV Data addr,R4 E2 1 MOVX A,@RO
8D 2 MOV Data addr,RS E3 1 MOVX A @R1
8E 2 MOV Data addr,R6 E4 1 CLR A
8F 2 MOV Data addr,R7 E5 2 MOV A,data addr
90 3 MOV DPTR, #data E6 1 MOV A,@RO
91 2 ACALL Code addr E7 1 MOV A,@R1
92 2 MOV Bit addr,C E8 1 MOV A RO
93 1 MOVC A,@A +DPTR E9 1 MOV AR1
94 2 suBB A, #data EA 1 MOV AR2
95 2 suBB Adata addr EB 1 MOV AR3
96 1 SuBB A,@RO EC 1 MOV AR4
97 1 suBsB A,@R1 ED 1 MOV A RS
98 1 SUBB ARO EE 1 MOV A.R6
99 1 SuBB AR1 EF 1 MOV AR7
9A 1 suBB AR2 FO 1 MOVX @DPTR,A
9B 1 sSuBB AR3 F1 2 ACALL Code addr
9C 1 sSuBB AR4 F2 1 MOVX @RO,A
9D 1 suBB AR5 F3 1 MOVX @R1.A
SE 1 sSuBB AR6 F4 1 CPL A
9F 1 SUBB AR7 F5 2 MOV Data addr,A
A0 2 ORL C,/bit addr F6 1 MOV @RO,A
A1 2 AJMP Code addr F7 1 MOV @R1,A
A2 2 MOV C,bit addr F8 1 MOV RO,A
A3 1 INC DPTR F9 1 MOV R1,A
A4 1 MUL AB FA 1 MOV R2,A
A5 Reserved FB 1 MOV R3,A
A8 2 MOV @RO,data addr FC 1 MOV R4,A
A7 2 MOV @R1,data addr FD 1 MOV R5,A
A8 2 MOV RO,data addr FE 1 MOV R6,A
A9 2 MOV R1,data addr FF 1 MOV R7,A
80C521/80C321/80C541

8-21

87C521/87C541

CMOS Single-Chip Microcontrollers

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Software and pin-compatible with 80C51,

80C521, and 80C541 RAM EPROM
® Beneficial for prototyping and initial production (bytes) (bytes)
® All 80C521 and 80C541 features retained 87C521 256 8K
® Flashrite™ EPROM programming 87C541 256 16K
: ;’;voB-IeveIIE Progrtgm l'\:emory Lock 87C521 = User programmable 80C521

-Byte Encryption Array) 87C541 = User programmable 80C541

® In-Circuit Test Mode facilitates testing

GENERAL DESCRIPTION

The 87C521 and 87C541 are CMOS EPROM versions of The EPROM features on the 87C51 and 87C52T2 have
the 80C521 and 80C541, respectively. The 87C521 in- also been retained. A two-level programmable lock struc-
cludes 8K bytes of on-chip EPROM, and the 87C541 ture prevents externally fetched code from accessing
includes 16K bytes of EPROM. internal Program Memory and can disable EPROM verifica-
tion and programming. A 32-byte Encryption Array can be
used to encode the program code bytes during EPROM
vermcatlon A Flashnte programmmg algorithm allows the

) 876541 to be programmed
, respectively.

These user-programmable products are software- and pin-
compatible with their ROM-based counterpans All of the
80C521 and 80C541 feature! i
robust Watchdog Timer, Dyal
Reset. For more informati
Datasheet (order #091@8}

FREQUENCY
REFERENCE COUNTERS
OSCILLATOR TWO 16.81T
EPROM RAM
& TIMER/EVENT
THIING 8K/16K BYTES 256 BYTES MEREVEN

b4 ﬁ ﬂ

WATCHDOG
0 K [
PROGRAMMABLE
64K BYTE BUS RIAL

Expms'ou PROGRAMMABLE 110 « FULL DUPLEX

CONTROL SYNCHRONOUS
SHIFTER
INTERRUPTS : : :
INTERRUPTS CONTROL SERIAL SERIAL
ADORESS DATABUS, IN out
AND LO PINS
BD007750

8-22

Publication # Rev. Amendment
/0

09744 B
87C521/87C541 Issue Date: October 1989

o

CONNECTION DIAGRAMS

Top View
DIP LCC

Pro 11 ~ 40 [Ve

Pa[]2 39 [] Po.0 ADg

p2[]3 38 : PO.1 AD, P15 PO.4

PLa[]e 37 Po2 AD; :

P14 []s 36 [P03 ADy P16 Po5

Pis[1s 35 [] Po4 AD, P1.7 P0.6

Pe[]7 34 [] P05 ADs RST P0.7

Pz [18 33] P08 ADg —

RsT [] 9 3271 po7 A, P3.0 EA/Vpp
RXD P30 [] 10 31[] EA/Vpp NC Vs
XD P31 [} 11 30 [] ALE/PROG —_—
T, paz [12 2 [FaER P3.1 ALE/PROG
T, a3 [13 28 7] P27 Ay P32 PSEN

To P34 [} 14 27 [7] P26 Aqe P33 P27
T Pas)15 26 [p2s Ay

Wh pas [16 25 [7] P24 Ay P34 P26

RD P37 [17 24 [] P23 Ay P35 P25
XTAL, [] 18 23] P22 Ay
XTALy] 1o 22) P2y Ay
Vgg [] 20 211 P20 Ag

CD005552

CD010872

EA/Vpp
Vss
ALE/PROG
PSEN

P2.7

P2.6

P25

21 22 23 24 25 28 27 28

irfgiiid

Pag
Pa7
XTAL

CD009442

Note: Pin 1 is marked for orientation.

87C521/87C541 8-23

LOGIC SYMBOL

il

lRST

4—“—}_'

Hinnnnonnmn

E;/Vpp —
PSEN ~—ip
Pe—

ALE/PROG

hp (]
iNT,
INT,

L
L

s~

W i

T

ADDRESS & DATA BUS

ADDRESS BUS

LS001326

8-24

87C521/87C541

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is

formed by a combination of: a. Temperature Range
b. Package Type
c. Device Number
d. Speed Option
e. Optional Processing

7C521

|

OPTIONAL PROCESSING
Blank = Standard processing

o

. SPEED OPTION
Blank = 3.5 to 12 MHz
-1=35 to 16 MHz

o

. DEVICE NUMBER/DESCRIPTION
87C521/87C541
CMOS Single-Chip Microcontroller

b. PACKAGE TYPE
D = 40-Pin Ceramic DIP (CDV 040)
R = 44-Pin Leadless Chip Carrier (CLV 044)
P = 40-Pin Plastic DIP (PD 040)
N = 44-Pin Plastic Leaded Chip Carrier (PL 044)

Valid Combinations
87C521
D, R P, N 87C521-1
ID, IR, IP, IN 870541
87C541-1

TEMPERATURE RANGE
Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C)

Valid Combinations

Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid
combinations, to check on newly released valid combinations,
and to obtain additional data on AMD's standard military
grade products.

87C521/87C541

8-25

PIN DESCRIPTION

Port 0 (Bidirectional; Open Drain)

Port 0 is an open-drain 1/0 port. Port O pins that have 1s
written to them float, and in that state can be used as high-
impedance inputs.

Port 0 is also the multiplexed low-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting 1s. Port 0 also outputs the code bytes during
program verification in the 87C521/87C541. External
pullups are required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have 1s written to them are pulled
High by the internal pullups and—while in this state—can be
used as inputs. As inputs, Port 1 pins that are externally
being pulled Low will source current (lj_ on the data sheet)
because of the internal pullups.

Port 1 also receives the low-order address bytes during
program verification.

Port 2 (Bidirectional)

Port 2 is an 8-bit bidirectional I/0 port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having 1s written to them are pulled High
by the internal pullups and—while in this state—can be used
as inputs. As inputs, Port 2 pins externally being pulled Low
will source current () because of internal pullups.

Port 2 emits the high-order address byte during fetches from
external Program Memory and during accesses to external
Data Memory that use 16-bit addresses (MOVX @DPTR). In
this application it uses strong internal pullups when emitting
1s. During accesses to external Data Memory that use 8-bit
addresses (MOVX @Ri), Port 2 emits the contents of the P2
Special Function register.

Port 2 also receives the high-order address bits during the
programming of the EPROM and during program verification
of the EPROM, as well as some control signals.

Port 3 (Bidirectional)

Port 3 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins having 1s written to them are puiied High
by the internal pullups and—while in this state—can be used
as inputs. As inputs, Port 3 pins externally being pulled Low
will source current (lj) because of the pullups. Port 3 also
receives some control signals for EPROM programming and
program verification.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function
P3o RxD (Serial Input Port)
P31 TxD (Serial Output Port)
P32 INTo (External Interrupt 0)
P33 INT4 (External Interrupt 1)
P34 To (Timer 0 External Input)
P3s T4 (Timer 1 External Input)
P3g WR (External Data Memory Write Strobe)
P37 RD (External Data Memory Read Strobe)

RST Reset (Input; Active High)
This pin is used to reset the device when held High for two
machine cycles while the oscillator is running. A small
internal resistor permits power-on reset using only a
capacitor connected to Vcc.

Immediately prior to a Watchdog Reset or Software Reset,
this pin is pulled High for one state time. The internal pullup
can be overdriven by an external driver capable of sinking/
sourcing 2.5 mA. (See Figure 6 of the 80C521 Datasheet,
order #09136C/0, for possible circuit configurations.)

ALE/PROG Address Latch Enable/Program Puise
(Input/Output)
Address Latch Enable output pulse for latching the low byte
of the address during accesses to external memory. ALE
can drive eight LS TTL inputs.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory. This
pin also accepts the program pulse input (PROG) when
programming the EPROM.

PSEN Program Store Enable (Output; Active Low)
PSEN is the read strobe to external Program Memory. PSEN
can drive eight LS TTL inputs. When the device is executing
code from an external program memory, PSEN is activated
twice each machine cycle—except that two PSEN
activations are skipped during each access to external Data
Memory. PSEN is not activated during fetches from internal
Program Memory.

EA/Vpp External Access Enable/Programming
Voltage (Input; Active Low)

EA must be externally held Low to enable the device to
fetch code from external Program Memory locations 0000H
to 1FFFH for the 87C521 and 3FFFH for the 87C541. If EA
is held High, the 87C521/87C541 executes from internal
Program Memory unless the program counter exceeds
1FFFH and 3FFFH respectively.
This pin also receives the 12.75-V programming supply
voltage during programming of the EPROM.

XTALy Crystal (Input)
input to the inverting-osciiiator ampiifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)
Output of the inverting-oscillator amplifier.

Vcc Power Supply
Power supply during normal, idle, and power-down
operations.

Vgs Circuit Ground

8-26

87C521/87C541

PROGRAMMING

The 87C521/87C541 can be programmed with the Flashrite
algorithm. 1t differs from other methods in the value used for
Vpp (programming supply voltage) and in the width and
number of the ALE/PROG pulses.

To program the EPROM, either the internal or external
oscillator must be running between 4 and 6 MHz, since the
internal bus is used to transfer address and program data to
the appropriate internal registers. Table 1 shows the various
EPROM programming modes.

Table 1. EPROM Programming Modes for the 87C521/87C541

Mode RST PSEN ALE/PROG EA/Vpp P2.7 P2.6 P3.7 P3.6
Program Code H L L* Vpp H L H H
Verify Code H L H Vppx L L H H
Pgm Encryption Table H L L* Vpp H L H L
Pgm Lock Bit 1 H L L* Vep H H H H
Pgm Lock Bit 2 H L L* Vpp H H L L
Read Silicon Signature H L H H L L L L

Key: H = Logic High for that pin
L = Logic Low for that pin
Vpp =1275 V $0.25 V
Vcc =5 V £10% during programming and verification
2.0 V<Vppx<13.0 V

*ALE/PROG receives 25 programming pulses while Vpp is held at 12.75 V. Each programming pulse is Low
for 100 us (x10% us) and High for a minimum of 10 us.

Programming

The programming configuration for the 87C521 is shown in
Figure 1. The address of the EPROM location to be pro-
grammed is applied to Ports 1 and 2 as shown in the figure.
The programming configuration of the 87C541 is identical
except that P2.5 is also used as an address input. The code
byte to be programmed into that location is applied to Port 0.
Once RST, PSEN, Port 2, and Port 3 are held to the levels

indicated in Figure 1, ALE/PROG is pulsed Low 25 times, as
shown in Figure 2.

The maximum voltage applied to the EA/Vpp pin must not
exceed 13 V at any time as specified for Vpp. Even a slight
spike can cause permanent damage to the device. The Vpp
source should thus be well-regulated and glitch-free.

When programming, a 0.1-uF capacitor is required across Vpp
and ground to suppress spurious transients that may damage
the device.

+5V

ADDR Py
0000H-OFFFH

P20-P23

Vin —C: Pas
Pay

Vit ———{ Py

87Cs1

v
—_——
" P2y

T XTAL

L
4-6mHz []

XTAL

Vss

il

Py K PGM DATA

l«—— PROG (25 100.us puises to GND)

& le——Vep =127V

[4— Vit

1

TC004691

Figure 1. 87C521 Programming Configuration

87C521/87C541

8-27

25 PULSES

ALE/PROG:

ALE/PROG:

1

0
1
]

AL

1048 MIN-O‘ 100 s

£10us

Program Verification

The 87C521/87C541 provides a method of reading the
programmed code bytes in the EPROM array for program
verification. This function is possible as long as Lock Bit 2 has
not been programmed.

For program verification, the address of the Program Memory
location to be read is applied to Ports 1 and 2 as shown in

WF025700

Figure 2. PROG Waveforms

Figure 3. Verification of the 87C541 is identical except that
P2.5 is also used as an address input. Once RST, PSEN, Port
2, and Port 3 are held to the levels indicated, the contents of
the addressed location will be emitted on Port 0. External
pullups are required on Port O for this operation. The EPROM
programming and verification waveforms provide further
details.

ADDR
0000H-1FFFH

PaoPas

B
Paz

Vit ——— Pas

ENABLE = Vi —1 p,

XTAL,

e o
semz 1
T

XTAL,

88

87Cs521

Vee
READ
P DATA
0 (USE 10K
PULL UPS)

ALEFROG [¢—— Vi
EAVpp |&— Vepx
20V < Vppy <130V

RST [&— Vy,

PSEN

TC004673

Figure 3. 87C521 Program Verification

8-28 87C521/87C541

Program Encryption Table

The 87C521/87C541 features a 32-byte Encryption Array. It
can be programmed by the customer, thus encrypting the
program code bytes read during EPROM verification. The
EPROM verification procedure is performed as usual except
that each code byte comes out logically X-NORed with one of
the 32 key bytes.

The key byte used is the one whose address corresponds to
the lower 5 bits of the EPROM verification address. Thus,
when the EPROM is verified starting with address 0000H, all
32 keys in their correct sequence must be known. Unpro-
grammed bytes have the value FFH. Thus, if the Encryption
Table is left unprogrammed, no encryption will be performed,
since any byte X-NORed with FFH leaves that byte un-
changed.

To program the Encryption Table, programming is set up as
usual, except that P3.6 is held Low, as shown in Table 1. The
25-pulse programming sequence is applied to each address,
00 through 1FH. The programming of these bytes does not
affect the standard 4K-byte EPROM array. When the Encryp-
tion Table is programmed, the Program Verify operation will
produce only encrypted data.

The Encryption Table cannot be directly read. The program-
ming of Lock Bit 1 will disable further Encryption Table
programming.

Security Lock Bits

The 87C521/87C541 contains two Lock Bits that can be
programmed to obtain additional security features.
P = Programmed and U = Unprogrammed.

Lock Bit 1 Lock Bit 2 Result
V] Normal Operation

P u + Externally fetched code cannot access internal Program Memory
+ All further Programming disabled (except Lock Bit 2)
Reserved

P P « Externally fetched code cannot access internal Program Memory
* All further Programming disabled
* Program Verification disabled

To program the Lock Bits, a 100 pulse programming sequence
is required using the levels shown in Table 1. After Lock Bit 1
is programmed, further programming of the Code Memory and
Encryption Table is disabled. However, Lock Bit 2 may still be
programmed, providing the highest level of security available
on the 87C521/87C541.

Silicon Signature Verification

AMD supports silicon signature verification for the 87C521/
87C541. The manufacturer code and part code can be read
from the device before any programming is done to enable the
EPROM Programmer to recognize the device.

To read the silicon signature, the external pins are set up as
shown in Figure 4. This procedure is the same as a normal
verification except that P3.6 and P3.7 are pulled to a logic
Low. The values returned are:

Manufacturer Code | Address: 0030H Code: 01H
Part Code: 87C521 | Address: 0031H Code: 32H
Part Code: 87C541 | Address: 0031H Code: 32H

Code 01H indicates AMD as the manufacturer. Code 32H
indicates that the device type is the 87C521 or 87C541.

In-Circuit Test Mode

The In-Circuit Test Mode facilitates testing and debugging of
systems using the 87C521/87C541 without the device having
to be removed from the circuit. The In-Circuit Test Mode is
invoked by:

1. Pulling ALE Low while RST is held High and PSEN is High.
2. Holding ALE Low as RST is deactivated.

While the device is in In-Circuit Test Mode, the Port 0 pins go
into a float state, and the other port pins and ALE and PSEN
are weakly pulled High. The oscillator circuit remains active.
While the 87C521/87C541 is in this mode, an emulator or test
CPU can be used to drive the circuit. Normal operation is
restored when a Hardware Reset is applied.

Erasure Characteristics

Light and other forms of electromagnetic radiation can lead to
erasure of the EPROM when exposed for extended periods
of - time.

Wavelengths of light shorter than 4000 angstroms, such as
sunlight or indoor fluorescent lighting, can eventually cause
inadvertent erasure and, therefore, should not be allowed to
expose the EPROM for lengthy durations (approximately one
week in sunlight or three years in room-level fluorescent
lighting). It is suggested that the window be covered with an
opaque label if an application is likely to subject the device to
this type of radiation.

Itis recommended that ultraviolet light (of 2537 angstroms) be
used at a dose of at least 15 W-sec/cm? when erasing the
EPROM. An ultraviolet lamp rated at 12,000 uW/cm2 held one
inch away for 20-30 minutes should be sufficient.

EPROM erasure leaves the Program Memory in an '"all ones"
state.

87C521/87C541

8-29

ADDR A7 Py
0000H-0001H

AgA P20P23

ViL —f Pas 87C521
or
ViL —»{ Pay 87C541

ViL —— P2s

ENABLE =V —fp,,

XTAL,

4-6MHz []
" E

XTAL,

Vee
READ
Py DATA
(USE 10KQ
PULL UPS)

ALE/PROG f¢—— ViH

EANpp [¢—— Vepx
20V <Vppy <130V

RST [&—— Vjyy

PSEN (Address 0030) = Manufacture Code
= 01H = AMD
(Address 0031) = Part Code
= 32H = 87C521
- = 32H = 87C541
TC004684

Figure 4. 87C521/87C541 Silicon Signature Verification Configuration

Oscillator Characteristics

XTAL4 and XTAL2 are the input and output, respectively, of an
inverting amplifier that is configured for use as an on-chip
oscillator (see Figure 5). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL
should be driven while XTALy is left unconnected (see Fig-
ure 6). There are no requirements on the duty cycle of the
external clock signal since the input to the internal clocking
circuitry is through a divide-by-two flip-flop; but minimum and
maximum High and Low times specified on the data sheet
must be observed.

L 1T\

EBi
+

TC004710

Figure 5. Crystal Oscillator

”°—| XTAL,

EXTERNAL
OSCILLATOR
SIGNAL

XTAL |

Vss

TC004700

Figure 6. External Drive Configuration

8-30

87C521/87C541

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65 to +150°C

Voltage on EA/Vpp Pin to Vgg 05 to +13.0 V
Voltage on Vg to Vg ...oenenet -0.5to +6.5V
Voltage on Any Other Pin to Vgs........... -05to +65 V
Power Dissipationcccooiiiiiiiin 200 mW

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

DC CHARACTERISTICS over operating ranges

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (Ta)
Supply Voltage (Vco) ...
Ground (Vss)

Industrial (I) Devices
Ambient Temperature (Ta)
Supply Voltage (Vo)
Ground (VSS) ... cvuiuniiiiiiaiee e (VY

Operating ranges define those limits between which the
functionality of the device is guaranteed.

.0 to +70°C
.+45 to +55 V

Parameter
Symbol Parameter Description Test Conditions Min. Max. Unit
ViL Input Low Voltage (Except EA) -05 0.2 Vcc-0.1 \
ViLy Input Low Voltage (EA) 0 0.2 Vgc-0.3 v
VIH Input High Voltage (Except XTAL¢, RST) Vge +0.5 \
ViH1 Input High Voitage to XTAL4, RST Vcc + 0.5 \
VoL Output Low Voltage (Ports 1, 2, 3) loL=1.6 mA (Note 0.45 \
Vou1 Output Low Voltage (Port 0, ALE, PSEN) oL 0.45 v
24
VoH Output High Voltage (Ports 1, 2, 3), ALE, PSEN \
0.9 Vcc
' . 0 uA, 4
VoH Suotg:)t High Voltage (Port 0 in Exter{\a? u c=5V £10% 2. v
. loH =-80 pA (Note 2) 0.9 Vco
i Logical 0 Input.Gument (Ports ViN =045 V -50 A
ITL Logical 1-to-0 j 1,2, 9) (Note 3) -650 HA
W] Input Leakage VIN=V|L or Vi +10 HA
Poxve'.r Suﬁglc)’/ Cu :12‘:MH Note 4 Note 4 mA
lec idie Mode é(?z e o Y (Note 5) Note 4
Power-Down Mode 50 MA
RRST Reset Pulldown Resistor 50 300 kQ
Cio Pin Capacitance ;:si zgeg,, 1 MHz, 10 pF
Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vos of ALE and Ports 1 and 3. The noise

is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations.
In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to
qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

N

address bits are stabilizing.

[A)

maximum value when VN is approximately 2 V.
. lccmAax at other frequencies is given by:

Active Mode: Icc TYPICAL = 0.94 x Freq + 13.71
Idle Mode: Icc TYPICAL = 0.38 x Freq + 5.4

IN

. Capacitive loading on Ports 0 and 2 may cause the Von on ALE and PSEN to momentarily fall below the 0.9 Ve specification when the

. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its

IlccMAax = 1.38 x Freq + 20.4
IccMAx = 0.38 x Freq + 11.9

where Freq is the external oscillator frequency in MHz. Iccmax is given in mA.

o

ViH =Voc-0.5 V; XTAL, NC; EA =RST =Port 0 = Vcg.
Idle Mode Icc is measured with all output
VIH =Vcc-0.5 V; XTALz = NC; Port 0 = Vcg;

. Active Mode Icc is measured_with all output pins disconnected; XTAL¢ driven with TCLCH, TCHCL=5 ns, V)L =Vgg+05 V,

ins disconnected; XTAL¢ driven with TCLCH, TCHCL=5 ns, V| =Vss+0.5 V,
A = RST = Vgs.

Power-Down Mode Icc is measured with all output pins disconnected; EA = Port 0 = Vcc; XTAL2 NC; RST = Vgs.

87C521/87C541

8-31

SWITCHING CHARACTERISTICS over operating ranges
(Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)
16 MHz Osc. 12 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Min. Max. Unit
1/TCLCL Oscillator Frequency 35 16 MHz
TLHLL ALE Pulse Width 85 127 2TCLEL-40 ns
TAVLL Address Valid to ALE Low 7 28 ns
TLLAX Address Hold After ALE Low 27 48 ns
TLLIV ALE Low to Valid Instr. in 150 4TCLCL-100 ns
TLLPL ALE Low to PSEN Low 22 43 ns
TPLPH PSEN Pulse Width 142 3TCLCL-45 ns
TPLIV PSEN Low to Valid Instr. In 3TCLCL-105 ns
TPXIX Input Instr. Hold After PSEN 0 ns
TPXIZ Input Instr. Float After PSEN 59 TCLCL-25 ns
TAVIV Address to Valid Instr. In 312 5TCLCL-105 ns
TPLAZ BSEN Low to Address Float 10 10 ns
TRLRH RD Pulse Width 6TCLCL-100 ns
TWLWH WR Pulse Width 6TCLCL-100 ns
TRLDV RD Low to Valid Datd 252 5TCLCL-165 ns
TRHDX Data Hold After 0 0 0 ns
TRHDZ Data Float After 55 97 2TCLCL-70 ns
TLLDV ALE Low to Valid Datd in 350 517 8TCLCL-150 ns
TAVDV ‘Address to Valid Data In_ 398 585 9TCLCL-165 ns
TLLWL ALE Low to RD or WR Low 137 238 200 300 3TCLCL-50 3TCLCL+ 50 ns
TAVWL Address Valid to RD or WR Low 120 203 4TCLCL-130 ns
TQVWX Data Valid to WR Transition 2 23 TCLCL-60 ns
TQVWH Data Valid to WR High 287 433 7TCLCL-150 ns
TWHQX Data Hold After WR 12 33 TCLCL-50 ns
TRLAZ RD Low to Address Float 0 0 0 ns
TWHLH RD or WR High to ALE High 22 103 43 123 TCLCL-40 TCLCL+ 40 ns
SWITCHING WAVEFORMS
KEY TO SWITCHING WAVEFORMS
WAVEFORM INPUTS OUTPUTS
MUST BE WILL BE
STEADY STEADY
WILL BE
I s Gt
WILL BE
[T wscesss s,
M DON'T CARE: CHANGING;
ANY CHANGE STATE
PERMITTED UNKNOWN
CENTER
H %ﬁfv’lof :.INE[I)S HIGH
“OFF" STATE
KS000010
8-32 87C521/87C541

SWITCHING WAVEFORMS

~—TLHLL—

ALE \ / \

L |
=TAVLL TLLPL TPLPH

TLLIV

\ TPLIV
PSEN
PXIZ

I

—
I-
ADg-AD7 X NSTR ADp-AD7

TLLAX |*—=] L—TPLAZ TPXIX —=

s
PORT O

TAVIV

r
PORT2 x Ag-A1s —X Ag-A15
\

External Program Memory Read Cycle

WF021962

ne /0 o J’ \ :
N

TLLDV
le—TLLWL TRLRH
7D A\ A
l——TRLDV ——]
TAVLL l*—{ TRHDZ
FTLLAX~] —| =TRLAZ TRHDX—* l..
{ ADg-AD; ADg-AD:
PORTO H |FROM AI OR DP DATA IN / FROM POL NeTR
TAVWL ADo-AD;
TAVDV
PORT 2 P20-P27 OR Ag-Ai5 FROM DPH x Ag-A15 FROM PCH
WF020963

External Data Memory Read Cycle

87C521/87C541 8-33

SWITCHING WAVEFORMS (continued)

TWHLH
T\ ,
PSEN J ____/

e TLLWL TWLWH
WR /
TQVWX
TWHQX
TAVLL TLLAX TQVWH {
ADQ -AD: 4 ADQ-AD INSTR
PORT 0 HFROM o DAL DATA OUT KXFRgM PC7L>——< N
TAVWL
PORT 2 X P20-P2.7 OR Ag-Aq5 FROM DPH X Ag-Ay5 FROM PCH
WF020934
External Data Memory Write Cycle
mstucton | o | 1} 2) s | 4) s | e | 7 | s |
ALE
fa=TxLxe |
CLOCK
TQVXH fa—s-] |e-TxHOX |
OUTPUT DATA N0 X1 Y2 Y s X 4 X 5 X s X 7 [
SET n
WRITE TO SBUF TxHovL—o{ ’ll“ TXHDX
INPUT DATA Quao)__Xvauo)__ XvaoX XvauoX XvauoX XvacoX XvaoX__ XVALo)
SET N
CLEAR RI
WF020951

Shift Register Timing Waveforms

8-34

87C521/87C541

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min Max. Unit
1/TCLCL r Frequency B 16 MHz
TCHCX ns
TCLCX ns
TCLCH 20 ns
TCHCL Fall Time 20 ns
Veg-08 —---=
\ TCHCX
045V
TCLCX —— = , TCLCH
TCHCL TCLCL |
WF020910
External Clock Drive Waveform
SERIAL PORT TIMING — SHIFT REGISTER MODE
(Test Conditions: To =0 to +70°C; Vcc=5 V £10%; Vgg =0 V; Load Capacitance = 80 pF)
16 MHz
Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. | Max. Min. Max. Unit
TXLXL i 750 12TCLCL ns
TQVXH) .10TQLCL-133 ns
TXHQX ; =] 21C ns
TXHDX Input Datg gr Clock Rising Edg ns
TXHDV Clock Rising Edge to Input Data Valid | | 700 | 10TCLCL-133 ns
AC Testing
Veg-08
cc 02 Vcc+09 VOH=0.1V
048V 02 Vec-01 VoL+0.1 VvV
WF020900 WF020940
AC inputs during testing are driven at Vcc-0.5 for a logic 1 and 0.45 V for For timing purposes a port pin is no longer floating when a 100-mV change
a logic 0. Timing measurements are made at Vj4 min. for a logic 1 and Vi, from load voltage occurs, and begins to float when a 100-mV change from
max. for a logic 0. the loaded VoH/VoL level occurs. loL/loH = 20 mA.
Input/Output Waveform Float Waveform

87C521/87C541

8-35

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA=+21 to +27°C)

Parameter Parameter

Symbol Description Min. Max. Unit
Vpp Programming Supply Voitage 12.5 P 13.0 v
Ipp Programming Supply Current 1 50 mA
1/TCLCL Oscillator Frequency 6 MHz
TAVGL Address Setup to PROG
TGHAX Address Hold After PROG ‘ j
TOVGL Data Setup to PROG 48TCLCL
TGHDX Data Hold After 48TCLCL
TEHSH P27 (Bymigh '$5 Vs, 4BTCLCL
TSHGL bp 96) . W 10 us
TGHSL o After, PP 10 us
TGLGH v fdth 90 110 us
TAVQV " /Address to Data Valid 48TCLCL
TELQV ENABLE to Data Valid 48TCLCL
TEHQZ Data Float After ENABLE 0 48TCLCL
TGHGL PROG High to PROG Low 10 us

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

PROGRAMMING VERIFICATION

ADDRESS > ADDRESS)——

— |[e—TAVQV

y,
{ DATAIN 4 DATAOUT }————-—-

TOVGL 8 |e- —+ [@1—TGHDX

TAVGL 25 PULSES TGHAX

TGHSL

LOGIC 1 LOGIC 1

LOGIC 0

——— e — - —— — — — o —— — —— — —— — —

TELQV [[+ TEHQZ

WF025692

For Programming conditions, see Figures 1 and 2.
For Verification conditions, see Figure 3.

8-36

87C521/87C541

CHAPTER 8
80C521 Family

Software Routines

DUAL DATA POINTER ROUTINES

The Dual Data Pointer feature enhances the manipula-
tion of external memory by providing an easy way to use
two separate 16-bit pointers with external memory andto
selectively switch between them. This can increase
execution speed of many functions considerably while at
the same time reducing the number of required instruc-
tions. Forinstance, in block-move operations in external
RAM, Dual Data Pointers can show more than 100%
speed improvement using less than 65% of the original
code space.

The following registers are associated with the Dual Data
Pointers.

Data Pointer Low (DPL)
DPTRO (Original
Data Pointer)
Data Pointer High (DPH)
Data Pointer Low 1 (DPL1)
DPTR1 (New
Data Pointer)
Data Pointer High 1 (DPH1)
Data Pointer Selection (DPS)

The six instructions that refer to “DPTR” now refer to the
data pointer that is currently enabled, either DPTRO or
DPTR1. DPS is used to selectively enable the data
pointers.

INC DPTR ;
MOV DPTR, #datalé ;
MOVC A, @A+DPTR ;
MOVX A, @DPTR ;
MOVX @DPTR,A ;
JMP @A + DPTR H

Increment Data Pointer

Loads DPTR with 16-bit constant

Move code byte relative to DPTR to Acc
Move external RAM to Acc

Move Acc to external RAM

Jump indirect relative to DPTR

For complete information on the Dual Data Pointer fea-
ture, consult the 80C521/80C321 Data Sheet.

Block Move in External RAM

Data Pointers are used extensively in the 8051 Family
when a block of data is moved from a source area to a
destination area in external RAM. The following ex-
amples illustrate the speed improvement and code
space efficiency gained by using the Dual Data Pointer
feature.

The first example shows a 32-byte block move executed
by atraditional, single data pointer 8051 Family member.
Contrast this with the second example which shows a 32-
byte block move executed using the Dual Data Pointers.

With Dual Data Pointers, one data pointer can be as-
signed to the source address and the other to the desti-
nation address. The code then switches betweenthe two
data pointers without having to save and restore a data
pointer. The speed improvement of this 32-byte block
move is 115% and uses less than 57% of the original
code space.

8-37

CHAPTER 8
80C521 Family

32-Byte Block Move with a Single Data Pointer

; SH and SL are the High and Low source addresses
; DH and DL are the High and Low destination addresses
; Register R5 contains the number of bytes to be moved

MOV
MOV
MOV
MOV
MOV
MOV

MOVX
MOV
MOV
MOV
MOV
MOVX
INC
MOV
MOV
MOV
MOV
INC
DJINZ

LOOP:

32-Byte Block Move with Dual Data Pointers

RS, #32
DPTR, #SHSL
R1, #SL
R2, #SH
R3, #DL
R4, #DH

A, @DPTR
R1,DPL
R2,DPH
DPL,R3
DPH, R4
@DPTR, A
DPTR
R3,DPL
R4,DPH
DPL,R1
DPH, R2
DPTR
RS, LOOP

’

;

Bytes/Cycles
2 1 32 bytes to move
3 2 Source address
2 1 Initialize source address
2 1
2 1 Initialize dest. address
2 1

NENNDNDNNDERBRNDNDNDNDR

NNMNNDNNDNNDNNMNNDMNNDNNDNNDDNDN

Read byte from source
Save source pointer

Load dest. pointer
Write byte to dest.
Next dest. pointer
Save dest. pointer

Load source pointer

Next source pointer
Loop till R5=0

; SH and SL are the High and Low Source addresses
; DH and DL are the High and Low Destination addresses
; Register R5 contains the number of bytes to move

; DPS =

MOV
MoV
INC
MoV

MOVX
INC
MOVX
INC
INC
INC
DJINZ

LOOP:

Suggestion: The fastest way to switch data pointers is to increment the DPS register. Since Bits 7—1 of this register
are defined to be zero, the increment (or decrement) operation simply alternates the contents of DPS between 00H

and 01H.

R5, #32
DPTR, #DHDL
DPS

DPTR, #SHSL

A, @DPTR
DPS
@DPTR, A
DPTR
DPS
DPTR
RS, LOOP

01 at start (DPTR1 selected)

Bytes/Cycles
2 1 32 bytes to move
3 2 DPTR1 = Dest. address
2 1 Switch to DPTRO
3 2 DPTRO = Source address

NERENRE RN

NNENDNDRPDN

Read byte from source
Switch to DPTR1

Write byte to dest.
Next dest. pointer
Switch to DPTRO

Next source pointer
Loop till R5=0

8-38

CHAPTER 8
80C521 Family

32-Byte Block Move Efficiency

Single
Data Pointer

Dual
Data Pointers

Instructions 19
Bytes 35
Cycles 839

Time (us) @16 MHz 629.

25

1

20
390
2925

N-Byte Block Move Efficlency (Where N < 256)

Single
Data Pointer

Dual
Data Pointers

Higher Performance Interrupt Routines

When a frequently occurring interrupt uses a data
pointer, the overhead required to store and reload it from
the main program can be significant. The performance of
interrupt-driven systems can be improved by using the
Dual Data Pointer feature to assign a data pointer to a
frequently called, time-critical interrupt routine.

Inthe following code, the Main routine uses only DPTRO.
The Interrupt routine stores a byte from the Serial Port

Instructions 19 1 into an external RAM buffer for later processing. DPTR1
Bytes 35 20 is dedicated for its use.
Cycles 26N +6 12N+ 6
Time (us) @16 MHz 0.75 (Cycles) 0.75 (Cycles)
RESET: SJMP START
START: MOV DPTR, #MAIN ; Main routine data pointer

INC DPS ; Switch to DPTR1

MoV DPTR, #INT ; Interrupt data pointer

; initialization
INC DPS ; Switch back to DPTRO
MOV IE, #90H ; Enable Serial Port Int.

; Main routine is using DPTRO

’ ...

; Program continue

————— >>> Interrupt occurs

; Interrupt routine begins at the Serial Port Vector Address

VECTOR: INC
MOV
MOVX
INC
INC
RETI

DPS

A, SBUF
@DPTR, A
DPTR
DPS

; Switch to DPTR1

; Read from Serial Port

; Store byte in RAM Buffer
; Next Dest. Address

; Switch to DPTRO

; Return from Interrupt

8-39

CHAPTER 8
80C521 Family

Full Duplex Transmit/Receive Buffering

Full Duplex Serial Port operation involves simultane-
ously transmitting and receiving data. Typically a sepa-
rate transmit buffer and a receive buffer are assigned in
the external memory. When a receive interrupt occurs,
the data received in the serial port receive register is

saved in the external receive buffer. When data is ready
to be transmitted, the data from the external transmit
bufferis loaded into the transmit register of the serial port.
With two data pointers available, one can be assignedto
the transmit buffer and the other to the receive buffer.
Thus, the interrupt overhead can be reduced.

; Initialize
MOV DPS, #00H
MOV DPTR, #XMTBUF
INC DPS
MOV DPTR, #RCVBUF

; Serial Port Interrupt Routine

INT_BEGIN: JB

RI,RECEIVE

; Select DPTRO
; Transmit RAM buffer address

Switch Data Pointers

; Receive RAM buffer address

; Receive a Byte

JB TI, TRANSMIT Transmit a Byte
SJIMP ERROR ; Error - neither bit set
TRANSMIT: CLR TI ; Clear Flag
MOV DPS, #00H Select DPTRO
MOVX A, @DPTR Load data from memory
jule)vs Cc,Pp ; Move Parity bit to carry bit
CPL (o] Set ODD Parity
MOV A.7,C ; Append to bit 7 in Acc
MoV SBUF, A Load data to transmit
INC DPTR ; Next Byte
RETI
RECEIVE: CLR RI ; Clear Flag
MoV A, SBUF Load received byte to Acc
JNB P, ERROR ; Jump if Parity error
ANL A, #7FH ; Mask off Parity bit
MOV DPS, #01H Select DPTR1
MOVX @DPTR, A Store byte in memory
INC DPTR ; Next byte
RETI
ERROR: cee eeess ; Error Handler
RETI

Tree Structure Manipulation

The Dual Data Pointers can be useful in applications
involving data structures containing pointer references,
suchastrees. Forinstance in atree searchalgorithm, the
node currently being searched and its parent may have
their addresses stored in the Dual Data Pointers. Even
though other required pointers will necessarily be
pushed onto the stack, most operations will involve only

the two most recently used data pointers. Thus the
search algorithm will execute more quickly.

In Figure 8-1, note that DPTR1 can be used to step
through another link at node “Dave”, as soon as DPTRO
is through accessing all of the links in leaf-node “Jim”.
The pointer for node “Randy” is located on the stack at
this point.

8-40

CHAPTER 8
80C521 Family

RANDY
DAVE ROBERT
BEN JIM LAURIE
DPTR 1
DPTRO

o
>
<
mj

)
|

09757A

Figure 8-1. Tree Structure in External Memory

ROM Table Access

Use of the Dual Data Pointers need not be limited to
manipulations in external RAM. Forinstance, one orboth
data pointers can be assigned to ROM tables in program
memory space. Table access is then performed with the
MOVC instruction. In this way, the base address of a
ROM table canreside in one of the data pointers, improv-
ing the effective access time.

Creating an External Stack

For applications that require large amounts of data to be
stored on a stack, the internal RAM space may not be

sufficientto containit. Thisis especially true if the internal
RAM is already being used extensively.

With Dual Data Pointers, one data pointer can be as-
signed specifically to an external stack space in external
RAM. The following code provides Push and Pop subrou-
tines using DPTR1 as a stack pointer. Two examples are
shown. In the first example the external stack may be up
to 64K bytes in length. The second example executes
more quickly, but the external stack is limited to 256
bytes.

8-41

CHAPTER 8
80C521 Family

Example 1 — 64K byte External Stack Space

; Both Routines Push/Pop bytes from/to the Accumulator

PUSH: INC DPS ; Switch to DPTR1
INC DPTR ; Increment DPTR1
MOV @DPTR,A ; Move Accumulator to Stack
INC DPS ; Switch back to DPTRO
RET

POP: INC DPS ; Switch to DPTR1
MOV A, QDPTR ; Move Stack byte to Acc
CJNE DPL1, #00H, LOW ;
DEC DPH1 ;

LOW: DEC DPL1 ; Decrement DPTR1
INC DPS ; Switch back to DPTRO
RET

Example 2 — 256 Byte External Stack Space

PUSH: INC DPS ; Switch to DPTR1
INC DPL1 ; Increment DPTR1
MOV @DPTR, A ; Move Accumulator to Stack
INC DPS ; Switch back to DPTRO
RET
POP: INC DPS ; Switch to DPTR1
MOV A, @DPTR ; Move Stack byte to Acc
DEC DPL1 ; Decrement DPTR1
INC DPS ; Switch back to DPTRO
RET

WATCHDOG TIMER ROUTINES

The Watchdog Timer (WDT) is a specially designed timer
that will reset the chip upon reaching a pre-programmed
time interval. Once started it cannot be disabled, except
by areset. It allows safe recovery from problems result-
ing from electrostatic discharge, external noise, unex-
pected input conditions or external events, and program-
ming anomalies. Two registers are associated with the
Watchdog Timer:

Watchdog Selection (WDS)
Watchdog Key (WDK)

WDS is usedto setupthe programmedtime intervals and
indicates the cause of the last reset — a Watchdog or

Software Reset versus a Hardware or Power-on Reset.
Sixteen time intervals are programmable varying from
128 pus to 4 s (at 12 MHz).

WDK is used to enable the Watchdog Timer as well as
clearit. Whenthe Watchdog Timer is cleared, its present
count is set to zero, but it continues to increment. For
complete information on the Watchdog Timer, consult
the 80C521/80C321 Data Sheet.

WDT Enable, Clear, and Reset Cause

The following example shows a method of setting up the
Watchdog time value to 16.384 ms assuming a 12 MHz
clock. The Watchdog Timer is then enabled.

; Enable Watchdog Timer

MOV WDS, #07H ; Set up 16.384 msec
MOV WDK, #AS5H ; Write first key value
MoV WDK, #5AH ; Write second key value

; Watchdog timer is

‘enabled’

8-42

CHAPTER 8
80C521 Family

Once the Watchdog Timer is enabled, a “clear” sequence
should be performed at intervals not exceeding the

16.384 ms time value. The enabling sequence may be

used to clear the Watchdog Timer.

; Clear Watchdog Timer
MOV
MOV

WDK, #A5H ; Write first key value
WDK, #5AH ; Write second key value
; Watchdog Timer is

‘cleared’

; but continues to increment.

To test whether the last reset was caused by a Watchdog
or Software Reset the following code may be used. If the

Reset Cause bit is set, then a Watchdog or Software
Reset has occurred.

; Reset Cause Identification
MOV A,WDS ;
JB A.7,WDRST ;

Read Watchdog Selection reg.
Jump if Reset Cause bit is

; set, else continue

WDRST:

..... ; Notify external circuitry

The security of the Watchdog Timer is not adversely
affected by interrupts that may occur in between the
writing of the ‘A5’ and ‘5A’ values to the WDK Register.
Thus, if necessary, the user may include clearoperations
within both a main routine and the interrupt routines.
Furthermore, the user need not disable interrupts during
the enable/clear operations.

Once the ‘A5’ is written to WDK, the interrupt routine can
only affectthe Watchdog Timerinthree ways: 1) itcango
ahead and enable/clear the Watchdog Timer with a ‘5A’.
(The subsequent ‘5A’ written by the main routine willthen
have no effect); 2) it can write another ‘A5’. This affects
neither the Watchdog Timer nor the main routine; or 3) it
can cause a Software Reset by writing a value other than
‘A5’ or ‘5A’. Any routine, though, can be written to
generate the Software Reset.

Power-Down Operation

While the Watchdog Timer is enabled, the Power-Down
mode is disabled. The user's code may still attempt to
enable the power-down operation (by writing a value 1to
the PD bit inthe PCON register), however, the PD bit will
remain at 0, and the power-down operation will not take
place. Ifthe WDT has not been enabled, the power-down
operation can proceed normally.

To enter Power-Down mode when the WDT is enabled,
the WDT must first be disabled via a Hardware Reset,
Software Reset, or Watchdog Reset. The easiest is the
Software Reset. This can be accomplished by writing an
‘A5’ to the Watchdog Key (WDK) register followed by a
value other than ‘A5’ or ‘5A’. This generates an immedi-
atereset, equivalentto aHardware Reset exceptthat the

Danat Naiinn hid ia aal
Reset-Cause bit is set.

8-43

CHAPTER 8
80C521 Family

The code below uses the Reset-Cause bit and the Status byte in internal RAM contains ‘88H’, then the
Internal RAM (which is not modified by a reset). Ifthe Power-Down mode will be entered by the program code.
Reset-Cause bit is set, and a special Power-Down-

; WDS = 7 sets up a Watchdog time of 16.384 msec @ 12 MHz.
; ‘A5’ followed by ‘5A’ written to WDK enables the WDT.

; RAM location 50H is Power Down Status

; 00 implies Power-Down has not been requested.

; 88 implies Power-Down has been requested.

RESET: MOV A,WDS ; Read Reset cause bit in WDS
JB A.7,WDRST ; Jump if reset caused by WDT
LJMP MAIN ; Go on to the Main Routine

WDRST: MoV RO, #50H ; Address Power Down Status
CJNE @RO, #88H,MAIN ; If Power-Down was not

; requested, then jump and
; continue normally

MOV PCON, #02H ; else enter Power-Down Mode
MAIN: MOV S50H, #00H ; Clear Power Down Status
MOV WDS, #07H ; Set up time value for WDT
MOV WDK, #AS5H ; Write first key value
MOV WDK, #5AH ; Write second key value
; cee i ; WDT is now enabled.

; Main Routine Continues..

; In Main Routine whenever Power-Down is required, execute:

MOV S50H, #88H ; Request Power Down operation
MOV WDK, #A5H ; Write first key value

MOV WDK, #11H ; Software Reset generated -
NOP ; Execution begins at RESET

; in 3 machine cycles.

8-44

CHAPTER 8
80C521 Family

Testing the Watchdog Timer

Two methods can be used to verify that the WDT is
enabled after the enabling sequence has been written
(rather than simply waiting for the WDT to reset to occur).
Method | can be used as a precautionary measure after

the enabling sequence or at various points within the
code. It may also be used to confirm the time interval
programmed into the WDT for applications that occa-
sionally use different Watchdog time intervals. Method
Il can be used as a debugging test during program
development.

Method |
MOV WDS, #07H ; Set the Watchdog time to
; 16.384 ms @12 MHz
MOV WDK, #AS5H ; Write first key value
MOV WDK, #5AH ; Write second key value
; WDT should now be enabled
MOV WDS, #00H ; Attempt to rewrite contents
; of the WDS Programmed Time
MOV A,WDS ; Read contents of WDS into Acc
CJINE A, #07, ERROR ; If contents are not 07, then
; jump to ERROR.
..... ; The WDT is enabled and the
; ACC now holds the programmed
; time value that the WDT is
; currently using.
ERROR:, ; Watchdog Timer never received
; the correct ‘A5-5A’ sequence
Method il
MOV WDS, #07H ; Set the Watchdog time to
; 16.384 ms @12 MHz
MOV WDK, #A5H ; Write first key value
MOV WDK, #5AH ; Write second key value
; WDT should now be enabled
WAIT: MOV A,WDS ;
JNB A.5,WAIT ; Wait 4.096 ms for the TV bit

; to be set
..... ; WDT enabled and incrementing

Using the Watchdog Timer as a Standard
Timer

The Timer Verification (TV) bitin the WDS register canbe
used to implement certain types of timer functions
through polling. Once the WDT is enabled, the TV bit will
toggle every 4.096 ms (at 12 MHz) until either the WDT
overflows, or the WDT is cleared. (The TV bit is initially
a 0 after any reset.) When the WDT overflows, a WDT

Reset occurs clearing the TV bit. When the WDT is
cleared, the TV bit is cleared, but begins toggling again
atthe samerate. If bits PT3-PTO0 are setto ‘0101’orless,
then a WDT Reset will occur before the TV bit toggles.

The following code uses the MAIN polling loop of an
application to watch forthe TV bitto toggle. It usesthe TV
bit to output a 25% duty-cycle pulse on Port Pin 1.7 with
a period of 1.049 s at 12 MHz.

8-45

CHAPTER 8
80C521 Family

; R6 If 0,

then Pulse is Low

; If 1, then Pulse is High

; LTIME = Low Time, the number of 4.096 ms units equaling
; 786 ms 192

; HTIME = High Time, the number of 4.096 ms units equaling

; 262 ms
; OLD_TV = A Direct RAM byte whose bit 0 location contains

; the last read value of TV

; R7 Contains number of TV toggles left to go before P1.7
; switches

INIT:

MAIN:

CONTINUE:

;

TOGGLE:

GO_LOW:

MOV

CLR
MoV
MoV
MoV
MOV

MOV
MOV
MOV

MOV
MoV
MoV
ADDC

JB

INC
DJNZ

CPL
MoV
MOV
CJINE

MOV
INC
SJMP

MOV
DEC
SJMP

WDS, #0FH

P1.7
R6,00H
R7, LTIME
WDK, #AS5H
WDK, #5AH

R6, 00H
R7, LTIME
OLD_TV, #00H

+ WD
A
,OLD_TV
#00

v »n

> P QP

r

A.0, TOGGLE

OLD_TV
R7, CONTINUE

P1.7

WDK, #AS5H

WDK, #5AH

R6, #00,GO_LOW

R7,HTIME
R6
CONTINUE

R7, LTIME
R6
CONTINUE

Set the Watchdog time to 4 S
at 12 MHz (safest value)

Set Port Pin to 0

Pulse is Low

Load Low Time

WDT is now enabled. TV begins
toggling

Pulse is Low

Load Low Time

0ld TV bit equals 0 (TV’s
reset value)

; Move TV bit to Carry
; Move 0l1d TV bit to ACC.0

Add TV bit (in Carry) to 0ld
TV bit

If A.0 = 1, then the TV bit
has toggled

Toggle 0ld TV bit in OLD_TV
byte

If R7 is not 0, then it is
not time to toggle P1.7 yet
Toggle Port Pin

Clear WDT, TV starts again
If R6 is 0, then load HTIME
else load LTIME

Load High Time

Pulse is High now

Load Low Time
Pulse is Low now

8-46

CHAPTER 8
80C521 Family

262 ms
HIGH TIME

1.049s
’—_
WAVEFORM PERIOD 0a757A

Figure 8-2. P1.7 Output — 25% Duty Cycle

SOFTWARE RESET ROUTINES

A Software Reset may be accomplished through the
Watchdog Timer. This “software generated” Watchdog
Reset occurs regardless of whether or not the Watchdog

Timer was previously enabled. If the Watchdog Timer
was enabled, it will be disabled following the reset. The
Software Reset is functionally equivalent to the Watch-
dog Reset.

Two write operations are required to initiate a Software
Reset to greatly reduce the chance of unintentional
Software Reset generation. More information is avail-
able in the 80C521/80C321 Data Sheet.

Using Software Reset

Whether or not the Watchdog Timer is being used, the
Software Reset feature of the Watchdog Timer may be
used to increase the reliability of the program code. For
instance, the detection of an unusual hardware error can
be followed by a jump to the following code which will
always cause a Software Reset.

CLR EA ;
MoV FLAG, #88H ;
MoV WDK, #ASH ;
julears WDK, #11H H
NOP ;

Disable all interrupts.
Optional

Optional

Write first key value

Write a non-A5, non-5A value.
Software Reset has now been
generated via the WDT.
Optional

If the Watchdog Timer is cleared within an interrupt
routine, that interrupt should be disabled before execut-
ing a Software Reset sequence. If the interrupt occurs
between the two writes to WDK, and then clears the
Watchdog Timer, a Software Reset will notbe generated.

To distinguish between a Watchdog Reset and a Soft-
ware Reset (or separate causes of a Software Reset), a
flag value may be written to internal RAM. This flag can
be used in combination with the Reset-Cause bit to
distinguish between the reset types. An example of this

method is shown in the “Power Down Operation” soft-
ware routine.

Afterthe value ‘11H’ is written to WDK, execution begins
at 0000H inthree machine cycles. One machine cycle of
normal execution takes place after the ‘11H’ is written.
Thus, the NOP can be included for safety. Since all
registers are initialized during reset, and all external
operations take two machine cycles, the only operation
that could possibly affect operation after the Software
Reset would be a one-cycle write to internal RAM.

8-47

CHAPTER 8
80C521 Family

Improving Reliability with Software Reset

For additional reliability, the following instruction se-
quence may be placed in any unused ROM program

space:
NOP ; First unused ROM location
NOP
MOV WDK, #AS5H
MOV WDK, #00H ; Software Reset generated
NOP
NOP
MoV WDK, #A5H
MoV WDK, #00H ; Software Reset generated
NOP
NOP
; cen e ; Continue repeating the 4-instruction
; ce e ; sequence
SOFTRESET: MOV WDK, #AS5H
MOV WDK, #00H ; Software Reset generated
NOP
NOP
SJMP SOFTRESET ; Last unused ROM location

If the program counter branches to any byte of this code instructions are used to force the program counter to
(other than the second byte of the SUIMP instruction), a adjust itself to an instruction boundary.
Software Reset will be quickly generated. The NOP

8-48

CHAPTER 9

80C324 CMOS Single-Chip Microcontroller
80C324 Data Sheet

80C324

CMOS Single-Chip Microcontroller

C\

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

® Software and pin-compatible with 80C321 and
industry standard 80C31

m Port Expansion Mode added to 80C321
—Capability for up to 15 8-bit I/O ports
—Software identical to on-chip 1/O ports
—-Simple external hardware construction

—Multiplexed through Port 1
—EA/PXS pin used for strobe timings

B All 80C321 features retained
—256 bytes RAM
—Dedicated Watchdog Timer

—Robust: Immune to software disables

—Flexible: User programmable from 128 us to
4 seconds @ 12 MHz

—Dual Data Pointers
—Faster external memory access
—Software Reset

GENERAL DESCRIPTION

The 80C324 is a superset of the 80C321 and industry
standard 80C31 architectures. The 80C324 provides an

expansion capab»llty for adding addmonal external /o]

performance /O ports can %\%@gﬁ
CPU without sacrificing any

PORT EXPANSION M

Port Expansion Mode (PEM) pt apability

to 15 full speed 1/O ports. Fourteen additional I/0 ports
can be constructed externally by multiplexing through
Port 1 and using EA/PXS for strobe timing. Port 3 oper-
ates as normal; however, all other ports, including Port 0
and Port 2, which normally are sacrificed for a multi-
plexed data/address bus, are reconstructed.

The new ports are accessed by software exactly as if
they existed on-chip. The entire 8051 instruction set is
available for these additional ports. Traditional memory-
mapped I/0 ports allow only four instructions to be used,
vastly reducing their effectiveness.

This document contains information on a product under development at Advanced Micro

Devices, Inc. The informa}ion is intended to help you to evaluate this product. AMD reserves the

right to change or di

work on this p d product without notice.

This product retains all of the features of a 80C321, in-
cluding a programmable Watchdog Timer and Dual
Data Pomters to enhance reliability and improve per-

“on these features see the

Hogic, latches, and buffers
exist externally, the 80C324 behaves as if these ports
were mapped into the internal SFR (Special Function
Register) space. The SFR address locations for the ex-
panded external ports are shown in Table 1.

When Port Expansion Mode is enabled, Port 1 pins
become the Port Expansion Bus, which contains the
information necessary to build ports externally. Port 1
may not be used as a standard port in Port Expansion
Mode; however, it may be rebuilt externally, if desired.
Port 3 always exists on-chip and is not affected by Port
Expansion Mode. The total number of possible ports,
including those on- and off-chip, is 15.

Publication # 12837 Rev. A
Issue Date: October 1989

Amendment 0

80C324 9-1

Table 1. Reserved Set of SFR Addresses in PEM The instructions that can operate on the external ports
during Port Expansion Mode include all instructions that

Address: Name: access direct addresses or bit addresses. Table 2
shows these instructions and the type of access that
*90H Port 1 (P1) is performed on the direct or bit address—Read-only,
91H Write-only, or Read/Write. Consult the 8051 Family
92H Instruction Set for full details. The MOVX instructions
93H (and therefore the Dual Data Pointers) are no longer
94H needed to access external ports, saving both time and
95H code space.
96H
97H
*COH Port 7 (P7)
*D8H Port 6 (P8)
*E8H Port 4 (P4)
*F8H Port 5 (P5)
*80H Port 0 (PO)
*AOH Port 2 (P2)
14
(Port 3 on-chip)
15 Total

Port Expansion mode feature is only available in 8031
mode (that is, EA is Low)

*Bit-Addressable Port (only Bit-Addressable Ports are given
formal names)

Table 2. Instructions Referencing Direct or Bit Addresses

Direct Information Type of Access Bit Instruction Type of Access
ADD A, direct Read CLR bit Read/Write
ADDC A direct Read SETB bit Read/Write
SUBB A direct Read CPL bit Read/Write
INC direct Read/Write ANL C,bit Read
DEC direct Read/Write ANL C,/bit Read
ANL A direct Read ORL C,bit Read
ANL direct,A Read/Write ORL C,/bit Read
ANL direct,#data Read/Write MOV C,bit Read
ORL A, direct Read MOV bit,C Read.Write
ORL direct,A Read/Write JB bit,rel Read
ORL direct,#data Read/Write JNB bit,rel Read
XRL A direct Read *JBC bit,rel Read/Write
XRL direct,A Read/Write
XRL direct,#data Read/Write
MOV A direct Read
MOV Rn,direct Read
MOV direct,A Write
MOV direct,Rn Write
+MOV direct,direct Read/Write
MOV direct, @Ri Write
MOV direct,#data Write
MOV @Ri,direct Read
PUSH direct Read
POP direct Write
XCH A, direct Read/Write
CJINE A direct,rel Read
DJNZ direct,rel Read/Write

*This instruction reads the bit twice.
+This instruction normally reads from one address and writes to another.

9-2 80C324

Enabling/Disabling Port Expansion Mode

If Port Expansion Mode (PEM) is not enabled, the archi-
tecture and operation of the 80C324 ports is identical to
that of the 80C31. Port Expansion Mode canbe enabled
by either hardware or software. These two options are
termed Hardwired PEM and Software PEM. They offer
different methods of entering/existing PEM, but behave
identically in every other respect.

Hardwired PEM

Hardwired PEM is enabled by placing 80C324 pins into
specific states before the falling edge of the reset pulse
on the RST pin. These values are latched internally on
the falling edge of the reset pulse during a Hardware or
Power-on Reset. After the reset pulse the port pins
should be driven to their initialization values by the user.
The drivers for ALE and PSEN should be three-stated by
the user at the falling edge of reset.

Hardwired PEM Enabling Requirements:

@ Falling RST @ Falling RST + 450 ns
*ALE Low High
*PSEN Low High
**P2.7 High Don't Care
P26 Low Don't Care

*ALE and PSEN have weak internal pullups that will pull
these pins High within 450 ns if they are not externally
driven Low by the user.

** During a reset sequence, this pin will be pulled High
internally and remain High, unless externally driven
Low by the user.

Once Hardwired PEM is enabled, it operates uninter-
rupted until a Hardware Reset (the Software and Watch-
dog Reset types do not disable Hardwired PEM). During
Hardware Reset, the defined values must again be
present on ALE, PSEN, P2.7, and P2.6 at the falling
edge of the pulse on the RST pin, or Hardwired PEM will
be disabled after reset. Hardwired PEM has priority over
Software PEM.

Software PEM

Software PEM is enabled through the Output Function
Enable (OFE) register. This register is Read/Write. If
Hardwired PEM is enabled, modifying this register will
not affect Port Expansion Mode. Its default value after
any reset is 00H.

Output Function Enable—(OFE)
Address: AC (Hex)

(MSB) (LSB
PEME| o | o

0 0 0 0 0

7 6 5 4 3 2 1 0

Bits 1-0
Reserved. Will return 0 when read.

Bit 2—Port Expansion Mode Enable (PEME)

If this bit is set to a 1, Software PEM will be enabled. If
this bit is 0, Software PEM will be disabled. The default
value of PEME after any reset is 0 (the state of this bit
may be modified by the user during Hardwired PEM, but
itwill not affect any chip operation). Since OFE is not bit-
addressable, this bit must be set with a direct instruction.

Bits 7-3
Reserved. Will return 0 when read.

Port Expansion Bus

Port 1 pins onthe 80C324 are used to carry information
required to build ports external to the device. An addi-
tional control signal, Port Expansion Strobe (PXS), is
provided that decreases the amount of external port ex-
pansion logic required. PXS is an output of the EA pin.
(The EAvalue is latched at every Hardware or Power-on
Reset, freeing this pin for the PXS function.)

When PEM is enabled, Port 1 changes state on every
Phi 2 transition of the clock, except when three-stated
(Figure 1). PXS and ALE decode various strobes that
are needed by the external logic, as shown in Table 3.

Table 3. Port Expansion Bus Control Logic

Description

ALE PXS Function
High Low to High Address Strobe
High High to Low Read Strobe
Low Low to High Write Strobe
Low High to Low No Information

External Port Address should be latched from Port 1

Read Data from the most recently latched address
should be driven onto Port 1

Write Data should be latched from Port 1 into the
most recently latched external port address

Switches state of PXS without affecting PEM

80C324 9-3

s1 s2 s: s4 83 £ 81 82

o I L L L | L [

A) Read/Write (1 Cycle) PORTY D(ﬁ j/(POAT
INC COH (CO is P7) (OUTPUT FROM 80C521) ©OFcooE X__@ U o X mﬂ
a5k

where COH contains 44H osH Con '
|
(Increment direct address) Pxs aoaess / \““0 WRITE o
1
EXTERNAL P7 BUFFER %)
(POAT 1 NPUT) \ CATA (
e

B) ng!:-g;:.‘\u Cycle) PoRT1 3 orcioe X X X PORT X POAT DATA X orCoOE x

§
B e R el

where ACC contains 48H ™ con an
(Move Accumulator to direct) Pxs sooness [o nro wRiTe o
C) Read-Only (1 Cycle)
MOV ACOH PORT 1 X oecooe X X fe }——'——(:X X 0PCO0E X
where CO contains 49H
= con '
(Move direct to Accumuiator) s ADORESS /- \ reso
A
l
EXTERNAL P7 BUFFER o\
POAT 1 NPUT) {_oata)
avet !
)
1
)
L——- Reed Deta amaly
Lawcned Here
WF025511

Figure 1. Three Examples of Port Expansion Bus Operation

9-4 80C324

Itis convenient to describe the operation of the Port Ex-
pansion Bus from the standpoint of the various 8051 in-
structions that may be executed by the user on the
80C324.

Ifthe instruction being executed does not reference a di-
rect or bit address, Port 1 may switch, but PXS will stay
Low (that is, inactive).

If the instruction references a direct or bit address within
the Reserved Set of PEM addresses (see Table 1), Port
1 and PXS will switch as shown in Figure 1. In examples
1aand 1c, Port 1 is three-stated during S5 in order to al-
low the read data to be driven back onto the Port Expan-
sion Bus. Read data will be internally latched by the
80C324 from the Port Expansion Bus at the beginning
of S5P2 (State 5 Phi 2). In example 1b, read data is not
required.

If the instruction references a direct or bit address that is
not within the Reserved Set, both PXS and Port 1 will
still switch as shown in Figure 1, except that Port 1 will
neverbe three-stated during S5. Thus, it is required that
the user fully decode the address of each external port
to avoid contention on the Port Expansion Bus when
Read Data is required (Note: There are certain configu-
rations where only the upper 5 bits of the address are re-
quired. See Tier 1.)

If a bit instruction is executed, the bit address, rather
thanthe port address, will be provided on Port 1. When a
bit address is provided, the entire port byte to which it
belongs must be supplied as Read Data. The port ad-
dress to be supplied is easily decoded from the bit ad-
dress, as it is simply the upper 5 bits of the direct ad-
dress (e.g., bit address FBH implies port address F8H).
The Write Data provided by the bit instruction forms the
entire byte that should be written to the port.

Table 4 gives examples of the preceding cases. The
“SJMP label” instruction does not involve a direct ad-

dress. The “INC direct” instruction performs a read of
the direct address, followed by a write of the incre-
mented value. The “SETB bit” instruction reads the di-
rect byte associated with the bit address, sets the bit lo-
cation within that direct byte, and rewrites the modified
direct byte.

For Hardwired PEM, the Port Expansion Bus operates
continuously, except during reset. For Software PEM
the Port Expansion Bus operates starting at S3P1 of the
instruction following the one that set the PEME bit in the
OFE register. If Software PEM is turned off, the Port Ex-
pansion Bus goes back to normal behavior, starting at
S3P1 of the instruction following the one that cleared the
PEME bit.

Entry into Idle Mode is possible during PEM. Both Port 1
and PXS will be internally pulled High during Idle. PEM
willremain enabled if Idle Mode is exited via an interrupt.

Entry into Power-Down Mode is possible during PEM.
Both Port 1 and PXS will be internally pulled High during
Power-Down. The Hardware Reset that follows will dis-
able both Hardwired and Software PEM; thus PEM must
be re-enabled after a Power-Down, if desired.

External Logic Implementation

Two tiers of implementation are possible. With just PXS
and address decode logic, most of the capabilities of on-
chip ports can be provided externally. These capabilities
are described in Tier 1. To exploit every possible capa-
bility, however, additional external logic must be pro-
vided to decode the opcodes of instructions as they are
executing on the 80C324. These capabilities are de-
scribed in Tier 2. The two tiers differ in external logic im-
plementation only; the 80C324 operates identically in
both cases. Tier 1 is a lower-cost solution and is prob-
ably sufficient for most applications.

Table 4. Examples of Port Expansion Bus Operation

Inst Description Port 1 and PXS Comments

SJMP label Short Jump to label PXS stays Low, Port 1 switches Does not reference a direct address

INC COH Increment direct Operates as in Figure 1 The direct address for Port 7 is within
the reserved set of PEM addresses

INC C3H Increment direct PXS switches, Port 1 switches Since direct address C3H is not in the
reserved set, Port 1 is not three-stated
during S5. PXS still switches as in
Figure 1

SETB C3H Set direct bit Same as Figure 1 except the Since bit address C3H is bit 3 of Port 7

Port Address is C3H

(COH), Port 1 is three-stated during S5.

80C324 9-5

The Simple Approach—Tier 1

Tier 1 consists of using Port 1 pins, Port Expansion
Strobe (PXS), and ALE. In Tier 1 the following capabili-
ties are possible.

The user may build up to 14 External Ports, with 5 being
Bit Addressable; orup to 6 External Ports, with all 6 be-
ing Bit Addessable. As shown in Table 1, Port locations
A0, CO, D8, E8, and F8H are Bit Addressabile. If a sixth
Bit Addressable port is needed, Port 1 (address 90H)
can be made Bit Addressable if addresses 91-97H are
notimplemented as external port addresses by the user
and never referenced as such, but reserved by the user
as the bit addresses of Port 1.

Ports A0, C0, D8, E8, and F8H each have the next 7 se-
quential addresses reserved in the 80C324, and are
therefore Bit Addressable in Tier 1 (e.g., if address DAH
is latched, the external logic can assume that it is refer-
ring to bit 2 of Port D8H, since no use for direct address
D8H exists on-chip).

Allinstructions can reference the new external ports ex-
cept “JBC bit,label.” Unlike other 8051 instructions, this
instruction is implemented with two consecutive “read”
operations. The PXS, ALE combination is not sufficient
to decode this case. The “JBC bit,label” instruction,
however, will still work as defined for any on-chip ports
while PEM is enabled. (Also, the JBC instruction can be
replaced with a “JB bit,label” followed by a “SETB bit” in-
struction at the branch address. If the bit was already
cleared, no time is added. If the bit was set, one machine
cycle is added.)

Read/Modify/Write (RMW) instructions are a subset of
the Read/Write instructions listed in Table 2. For the on-
chip ports, the RMW instructions read the port LATCH
(output) rather than the Port PINS (input) (i.e., they read
what was last written rather than what is currently pre-
sent onthe input pins). No such distinction can be imple-
mented with external ports in Tier 1, since PXS fur-
nishes only one type of Read Data strobe. The RMW
instructions, of course, may be freely used on the exter-
nal ports; however, the user should be aware that they
may not operate identically to the on-chip ports in all
designs.

For example, if an on-chip port pin is directly driving the
base of a transistor, the internal latch may contain a logi-
cal 1, while the actual voltage level on the pinis only 0.7
V. Thus, a RMW instruction would supply the value 1,
while an instruction that reads the pins would supply a
logical 0. For an external port, the Read Data strobe is
used to enable the external read buffer, always resulting
in alogical 0 being sent to the 80C324. For most applica-
tions, however, this distinction in operation will not be
seen.

The RMW instructions will still work in the customary
manner for any on-chip ports, whether or not PEMis en-
abled. All Read/Write instructions are shown in Table 5.

Table 5. Read/Write Instructions

Read/Modify/Write
Instructions

Other R/W Instructions

Read the On-chip Read the On-chip
Port Latch Port Pins
CLR bit XCH A direct
SETB bit MoV direct,direct
CPL bit

INC direct

DEC direct

ANL direct,A

ANL direct,#data

MoV bit,C

ORL direct,A

ORL direct,#data

JBC bit,rel

XRL direct,A

XRL direct,#data

DJUNZ direct,rel

Tier 1 for the 80C324: Port 0 is not Bit Addressable in
Tier 1. Port 2 is Bit Addressable.

Tier 1 Example

Figure 2 outlines the necessary blocks needed to imple-
ment Tier 1 Port Expansion Mode. This example builds
three external ports.

Port-X allows execution of all possible PEM instructions
(see Table 1) except “JBC bit, label,” as previously
noted. It requires both an output latch and an input
buffer. Port-Y is provided as a Write-only port and re-
quires just an output latch. Thus, instructions accessing
this port address must be limited to those that are Write-
only (see Tabie 1). Pori-Z is a Read-oniy port and re-
quires just an input buffer. Thus, instructions accessing
this port address must be limited to those that are Read-
only.

The external 2K-ohm resistor allows PXS to be sensed
by the external logic.

PXS and ALE are used to decode the Address, Read
and Write Strobes for the decode logic, buffers, and
latches respectively.

The bit addressability of the ports is determined by the
addresses assigned to the ports and whether or not read
operations are externally implemented. Since all bit
instructions require read operations, the Write-only
Port-Y is excluded from bit addressability. Port-X and
Port-Z can become Bit Addressable if assigned to ad-
dresses such as D8 and E8H. Bit-Addressable instruc-
tions used with Port-Z, however, would be limited to

9-6 80C324

those which are Read-only. Write operations to Port-Z
are disregarded.

The choice of addresses CO, D8, E8, and F8H as port
addresses (whether or not Bit Addressability is needed)
is advantageous from a decoding standpoint. Since the
next seven consecutive addresses beyond each of

these locations are not defined in the 80C324, the ad-
dress decoding may simply take place on the upper five
bits of these addresses. The decoding is identical,
whether or not Bit Addressability is desired.

The description of the Tier 1 example is independent of
the choice of Hardwired or Software PEM.

Latch
80C324 2 kohm Port-X.
EAPXS M\ _L | Read/Write
= LD
o 4 Write Strobe
> —» Address Strobe L | Port-X Enable
Strobe q
ALE Generation —» Read Strobe — ot
—» Write Strob Q__G: Read Strobe
e SHene Port-X Enable
Latch
/
Port 1 / | Port-Y
VA — Write-Only
8 | Port-X LD
Address - Enable Wit Strab
Decode | 4 Port-Y E_________G: rite Strobe
and Enable Port-Y Enable
Latch [Port-Z
Enable
L Port-Z
q Read-Only
OE
Read Strobe
Address Strobe Port-Z Enable
12837-002A

Figure 2. Tier 1 Logic Diagram

80C324

9-7

A Complete Approach—Tier 2

Tier 2 operation uses more than just PXS for decoding
operations. It involves decoding the opcode of the in-
struction executing through synchronization with ALE
and an external clock. The following capabilities are
possible.

The user may build up to 14 External Ports with 7 being
Bit Addressable. Bit addresses and byte addresses can
be distinguished in the 91-97H range since the opcode
is externally decoded. Port 1 can then be implemented
as Bit Addressable without sacrificing port addresses
91-97H. This is the main difference between Tier 2 and
Tier 1.

All instructions are now possible, if special attention is
given to “JBC bit,label.”

Read/Modify/Write implementation is possible if the
RMW instructions are decoded as such and additional
external logic is provided to read from either the external
latch (output) or external buffer (input).

Tier 2 Example

Figure 3 outlines the blocks necessary to implement
Tier 2 Port Expansion Mode. The Opcode-Decode block
is shown, adding full Read/Modify/Write capability to the
external ports, and allowing Port 0 to be Bit Addressable
while still providing the additional ports 91 and 92H.

An external clock to the 80C324 is assumed, allowing
a mechanism for latching the opcode. The first rising
edge of ALE after reset indicates the beginning of in-
struction execution. The opcode is latched from Port 1
one clock cycle later (see Figure 1). The next opcode will
appear either 12, 24, or 48 clocks later, as defined by the
current opcode (four-cycle instructions “MUL” and “DIV”
execute in 48 clocks). The PXS, ALE combination can
stillbe used in Tier 1 to decode the Address, Read, and
Write strobes.

Ifrequired, the “JBC bit,label” instruction may be imple-
mented with the first read strobe coming from PXS, and
the second read strobe coming from the Opcode De-
code block 12 clocks later.

Tier 2 is very powerful. The user can actually implement
his own custom operations based on correct decoding
of the opcode and address data. Forinstance, the “MOV
direct,A” instruction directed at Port Address F8H, for
example, could be defined to broadcast the contents of
the Accumulator to several external ports at once. Simi-
larly, an “ORL direct,A” instruction, operating on a given
port, could be defined to send its result to another exter-
nal port. If the contents of the Accumulator were 00H be-
fore this operation was performed, a one-cycle “move”
would result, increasing speed over the two-cycle “MOV
direct,direct” instruction.

The description of the Tier 2 example is independent of
the choice of Hardwired or Software PEM.

Port
90
80C324 2 kohm
Clock EAPXS W J_ Port |
91 |
0sc XTAL, =
> —» Address Strobe Fg,’z“
G Strobe | 3, Road Strobe
ALE eneration
¥ Write Strobe Port
yi COo
Port 1
8 Port
—» Port 90 D8
¥ Port 91
Clock Address |—p Port 92 Port
Opcode —¥ Read_Buffer Decode | o b co
ALE —M Decode andh e
Lart]gh —» Read_Latch Latc Port D8
RST —p @ —» Port E8 Port
—» BIT/BYTE) —» Port F8 F8
L Address Strobe
BIT/BYTE
12837-003A

Figure 3. Tier 2 Diagram

9-8 80C324

ABSOLUTE MAXIMUM RATINGS

Storage temperature -65°C to +150°C
Voltage onany Pinto Vss -05VtoVec +0.5V
VoltageonVccto Vss -05Vto65V
Power dissipation 200 mW

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

DC CHARACTERISTICS over operating range

OPERATING RANGES
Commercial (C) Devices

Temperature (Ta) 0to +70°C
Supply Voltage (Vee) +45Vto+55V
Ground (Vss)ovvniiiiiii i oV

Operating ranges define those limits between which the func-
tionality of the device is guaranteed.

Parameter Parameter
Symbol Description Test Conditions Min. Max. Unit
Vi Input Low Voltage (except EA) -0.5 0.2 Vec—0.1
Viu Input Low Voltage (EA) 02Vee-03 | V
Vi Input High Voltage
(except XTAL,, RST) Vec +0.5
Vins Input High Voltage (XTAL,, RST) Vec +0.5
Vo Output Low Voltage (Ports 1, 2, 3) lo.=1.6 mA (Note 1) 0.45
Vou Output Low Voltage (Port 0, ALE
PSEN) 045 | V
Vou Output High Voltage (Ports 1, 2, 3) 24
0.75 Ve v
0.9 Veo
Vons Output High Voltage (Port 0 | “lon =—800 HA, Vec =5 V+10% 24 \"
External Bus Mode, ALE.P low=-300 pA 0.75 Vee \Y)
low=-80 pA (Note 2) 0.9 Vee Vv
e urtent (Ports 1,2,3)] Vi=0.45V -50 | pA
n Transition Current V=2V -650 | pA
Iy ;eakage Current (Port 0, EA) | 0.45<Viy<Vec +10 | pA
RRST Reset Pulldown Resistor 50 150 kohm
Clo Pin Capacitance Test Freq.=1 MHz, T,=25°C 10| pF
lpo Power-Down Current Vec=210 6 V (Note 3) 50 pA

80C324 9-9

Maximum lcc (mA)

Operating (Note 4) Idle (Note 5)

18 5

5 6

Capacitive loading on ports may cause spurious noise pulses to be superimposed on the Vo S of ALE and other
ports. The noise is due to external bus capacitance discharging into the port pins when these pins make 1-to-0 transi-
tions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may
exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a
Schmitt-Trigger STROBE input. This note pertains to dual-in-line packages only. The additional Vcc and Vss connec-
tions on the PLCC package from AMD removes this design consideration.

Capacitive loading on ports may cause the Vo on ALE and PSEN to momentarily fall below the 0.9 Vcc specification
when the address bits are stabilizing. This note pertains to dual-in-line packages only. The additional Vcc and Vss
connections on the PLCC package from AMD removes this design consideration.

Power-Down lcc is measured with all output pins disconnected: EA = Port 0 = Vec; XTAL, NC; RST = Vss.

lec is measured with all output pins disconnected; XTAL, driven with TCLCH, TCHCL=5 ns, V\.=Vss+ 05 V,
Vin=Vec—~0.5 V; XTAL, NC; EA=RST=Port 0= V. Typical values are approximately 50% lower. lc would be
slightly higher if a crystal oscillator was used.

Idle lcc is measured with all output pins disconnected; XTAL, driven with TCLCH, TCHCL=5 ns, V\.=Vss+0.5 V,
Viu=Vee—0.5 V; XTAL, NC; Port 0 = V¢c; EA = RST = Vss, and the Watchdog Timer disabled.

9-10

80C324

Port Expansion Mode AC Timing

ALE

PXS

Port 1

<4+9

<4 10—

714 8

Write Data

Port Expansion Timing

Parameter Parameter

Symbol Description

1/TCLCL Oscillator Frequency
1 TAHPH ALE High TO PXS High
2 TAVPH Address Valid to PXS High
3 TPPW PXS Pulse Width CLCL-50
4 | TPLRD PXS Low to Read Data Valid TCLCL-50 ns
5 | TPHANV PXS High to Address " TCLCL-25 ns
6 TALRDT ALE Low to Read Data Tri-stated 0 TCLCL-10 ns
7 TWDPH - Data Valid to PXS High TCLCL-50 ns
8 TPM * PXS High to Write Data Not Valid TCLCL-25 ns
9 TPHAH PXS High to ALE High TCLCL-30 ns

10 TALPL ALE Low to PXS Low TCLCL-35 ns

80C324

SWITCHING CHARACTERISTICS over operating range (C. for Port 0, ALE and PSEN Out-
puts =100 pF; C. for all other Outputs =80 pF)

Parameter | Parameter 12-MHz Osc. Variable Oscillator
Symbol | Description Min. | Max. Min. | Max. Unit
EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

1/TCLCL | Oscillator Frequency 0.1 12 ""T‘MHZ
TLHLL ALE Pulse Width 127 2TCLCL-40 : ns
TAVLL Address Valid to ALE Low 28 TCLCL-55 ns
TLLAX Address Hold After ALE Low 48 TCLCL -35 ns
TLLIV ALE Low to Valid Instr. In " 4TCLCL-100 ns
TLLPL ALE Low to PSEN Low 43 ns
TPLPH PSEN Pulse Width 205 ns
TPLIV PSEN Low to Valid Instr. In 3TCLCL-105 ns
TPXIX Input Instr. Hold After PSEN 0 ns
TPXIZ Input Instr. Float After PSEN TCLCL-25 ns
TAVIV Address to Valid Instr. In 5TCLCL-105 ns
TPLAZ PSEN Low to Address Float 10 ns
TRLRH RD Pulse Width 6TCLCL-100 ns
TWLWH | WR Pulse Width 6TCLCL-100 ns
TRLDV RD Low to Valid Data In 5TCLCL-165 ns
TRHDX | Data Hold After RD . " 0 0 ns
TRHDZ Data Float After R_D'—w 97 2TCLCL-70 ns
TLLDV ALE Low to Valid Data In 517 8TCLCL-150 ns
TAVDV Address to Validwf‘);ta In 585 9TCLCL-165 ns
TLLWL ALE Low to RD or WR Low 200 | 300 3TCLCL-50 3TCLCL+50 ns
TAVWL Address Valid to Read or Write Low | 203 4TCLCL-130 ns
TQVWX Data Valid to WR Transition 23 TCLCL-60 ns
TQVWH Valid Data to Write High 433 7TCLCL-150 ns
TWHQX Data Hold After WR 33 TCLCL-50 ns
TRLAZ RD Low to Address Float 0] ns
TWHLH RD or WR High to ALE High 43 123 TCLCL-40 TCLCL + 40 ns

9-12 80C324

CHAPTER 10

Third-Party Support Products

Vendor/Product Listings 10-1
Hewlett-Packard Development System 10-3
Metalink Development System 10-8
American Automation Development System 10-13
Huntsville Microsystems Development System 10-14
Micro Computer Control 8051 C Compiler 10-15
Archimedes C-8051 Compiler 10-20
Data I/O Programmers 10-24

Advanced Micro Devices does not support, maintain, or guarantee the performance of third-party products described in this
chapter.

Chapter 10

¢\

Third-Party Support Products

INTRODUCTION

A number of support products are available for the 8051
microcontroller family. The following pages present
product descriptions of emulators, assemblers, compil-
ers, and programmers from various manufacturers. The
material is intended to present a collection of what is

available for AMD-manufactured 8051 Family microcon-
trollers, but is not necessarily a complete, up-to-date
listing of all available products. Further information may
be obtained from the individual companies listed and the
many other vendors that support 8051 Family products.
AMD does not guarantee the specifications of any of the
products listed.

Third-Party Support Products

Vendor

Primary 8051 Family

Products Description

Hewlett-Packard

1501 Page Mill Road

Palo Alto, CA 94304
(Contact local sales office)

Development System

Company provided, page 10-3

Metalink Corporation

PO Box 1329

Chandler, AZ 85244-1329
(602)926-0797 or (800) 638-2423

Development System

Company provided, page 10-8

American Automation
2651 Dow Avenue
Tustin, CA 92680
(714)731-1661

Development System

Company provided, page 10-13

Huntsville Microsystems
4040 S. Memorial Parkway
PO Box 12415

Huntsville, AL 35802
(205)881-6005

Development System

Company provided, page 10-14

Applied Microsystems Corp.

5020 148th Ave. N.E.

PO Box 97002

Redmond, WA 98073-9702
(206)882-2000 or (800)426-3925 (U.S.)
44-(0)-296-625462 (U.K.)

Development System

Call vendor for details

Kontron Electronics
D-8057 Eching/Munich
Oskar-von-Miller-Str. 1
West Germany
Phone: (0 81 65) 77-0

Development System

Call vendor for details

Nohau Corporation
51 E. Campbell Ave.
Suite 107E
Campbell, CA 95008
(408)866-1820

Development System

Call vendor for details

Signum Systems

1820 14th Street

Suite 203

Santa Monica, CA 90404
(213)450-6096

Development System

Call vendor for details

10-1

CHAPTER 10
Third-Party Support Products

Third-Party Support Products (continued)

Vendor Primary 8051 Family Products Description
Sophia Systems
NS Bldg 2-4-1 Development System Call vendor for details

Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
03-348-7000

Zax Corporation

2572 White Road

Irving, CA 92714

(714)474-1170 or (800)421-0982

Development System

Call vendor for details

Franklin Software, Inc.
888 Saratoga Avenue #2
San Jose, CA 95159
(408)296-8051

C Compiler, Assembler

Call vendor for details

Micro Computer Control
PO Box 275

Hopewell, NJ 08525
{(609)466-1751

C Compiler, Assembler

Company provided, page 10-15

Archimedes Software
2159 Union Street

San Francisco, CA 94123
(415)567-4010

C Compiler, Assembler

Company provided, page 10-20

Scientific Engineering Labs
255 Beacon St., Suite 3D
Somerville, MA 02143
(617)625-0288

Pascal Compiler

Call vendor for details

Boston Systems Office
128 Technology Center
Waltham, MA 02254-9164
(617)894-7800

PL/M Compiler, Assembler

Call vendor for details

Sysoft SA

6926 Montagnola
Switzerland
(091)543195

PL/M Compiler, Assembler

Call vendor for details

Cybernetic Micro Systems
Box 3000

San Gregorio, CA 94074
(415)726-3000

Simulator, Debugger

Call vendor for details

Microtek Research
Box 60337
Sunnyvale, CA 94088
(408)733-2919

Simulator, Assembler

Call vendor for details

Data /O
Contact local sales office

or call: (800)247-5700 Dept 401

EPROM-version Programmer

Company provided, page 10-24

Stag Microsystems

1600 Wyatt Drive

Santa Clara, CA 95054
(408)988-1118 or (800)227-8836

EPROM-version Programmer

Call vendor for details

10-2

CHAPTER 10
Third-Party Support Products

HEWLETT-PACKARD
DEVELOPMENT SYSTEM

Emulators

Hewlett-Packard offers a wide selection of emulators to
support microprocessor and microcontroller-based
product development. These emulators provide the
essential link between software development and hard-
ware/software integration. Code developed on the HP
64000 system or compatible host computers is executed
on the emulation subsystem and user’s target system, if
available, for real-time debugging and logic analysis.

Hewlett-Packard emulators are part of an integrated set
of design and development tools that include Teamwork/
SA/RT/SD for structured analysis and design; cross
compilers and assemblers/linkers for programming at
the most efficient level; directed-syntax softkeys and an
easy-to-use, responsive editor to streamline software
development and documentation; and analysis subsys-
tems which provide powerful measurements to investi-
gate program execution, timing relationships, system
performance, and processor activity.

Universal Development System

HP 64000 products comprise a universal development
system that provides development support that includes
the 8051 Family of microcontrollers. When additional
emulators are introduced to support popular new proces-
sors, they are easily integrated with existing HP 64000
real-time analysis tools. This flexibility protects the capi-
talinvestment ininstrumentation, since new projects and
goals can be accommodated with low-cost add-ons
rather than total replacement of development systems
and tools.

System Environment

Hewlett-Packard supports the universal development
system with two system platforms; a general-purpose,
multiuser computer and a dedicated, stand-alone work-
station.

The HP 64000-UX Microprocessor Development Envi-
ronment is based on the HP 9000 Series 300 general-
purpose computer, running the HP-UX* operating sys-
tem. This workstation platform is common to the design
engineering tools of HP Design Center. The multiuser
capability of the Series 300 allows for shared hardware
and software resources among system users. Multiple
window capability allows integration and debug tasks to
be viewed simultaneously, for convenient observation of
interactive debug information. The HP-UX operating

environment supports user-programmable command
files for repetitive and complex test routines. HP 64000-
UX systems can be easily connected to other host
computers or system resources.

The HP 64000-UX environment is compatible with the
dedicated, stand-alone HP 64100A and 64110A Logic
Development Stations. The same emulation and analy-
sis card sets for most subsystems are used in boththe HP
64000-UX Microprocessor Development Environment.
In addition, these hardware platforms can be networked
via high-speed link or RS-232 for maximum productivity.

Features

* Real-time emulation for evaluating target system
performance and critical timing relationships

¢ Multiple emulation capabilities for multiprocessor
product designs

¢ Display and modify memory, registers, and I/0 ports

* Disassembly of microprocessor instruction set

¢ Source-line referencing

¢ Symbolic debugging for emulation and analysis
operations

* Compatible and interactive high-performance logic
analyzers for hardware, software, and software
performance analysis

* Run control, single stepping, run from, and run until

* HP 64000 system resources (disc files, printer, de-
velopment station keyboard, display, and RS-232
port) can be used to simulate target system I/O

* Emulation memory available from 32 Kbytes to 64
ytes

* Memory assigned by blocks to target system or
emulation memory over the microprocessor’s entire
address space; designated as ROM, RAM, or illegal
address space.

¢ User-definable emulator kit for custom emulation
support

Measurement System Configuration

An HP 64000 emulation subsystem consists of an emu-
lation control card, emulation pod, and operating soft-
ware. An emulation bus analyzer is used for tracing
activity on the emulation bus in real-time. Trace lists
generated by the analyzer may be displayed in the
mnemonics of the target processor. Inverse assembler
software is included in the emulation software. HP
64856A User Definable Inverse Assembly software
package may be used to generate mnemonics for the
User Definable Emulator (UDE) and User Definable
Preprocessor. Cross assemblers/linkers are available.

*HP-UX is Hewlett-Packard's implementation of the UNIX operating system.

10-3

CHAPTER 10
Third-Party Support Products

The analytical functions of the emulator canbe expanded
with Model 64310A Software Performance Analyzer.
Input data fromthe HP 64310A analyzeris collected from
activity onthe emulation bus. The performance analyzer
provides the macro overview measurements needed for
optimizing and modifying code for more efficient software
performance.

When complex, detailed logic state analysis is required,
the powerful HP 64620S Logic State/Software Analyzer
can be integrated directly into the emulator subsystem
via HP 64304A Emulation Bus Preprocessor. The added
power of software analysis provides traces converted to
high-level language source code as well as assembly
language or numeric code lists.

For hardware debugging, the powerful HP 64610S High-
speed Timing/State Analyzer checks timing relation-
ships, locates glitches, and identifies marginal signals.
For high-speed logic designs, the analyzer functions as
a 125-MHz state analyzer.

Anewdimensionof analysis power canbe addedwiththe
Intermodule Bus (IMB) which links analyzers and emula-
tors. The IMB communicates with the emulator through
the HP 64302A Emulation Bus Analyzer. Other analysis
subsystems that can be added to the IMB are the HP
64620S Logic State/Software Analyzer, HP 64310A
Software Performance Analyzer, HP 64610S High-
speed Timing/State Analyzer, and HP 64340 Real-time
High-level Software Analyzer. Cross triggering between
analyzers enables the designer to make coordinated
measurements that help solve complex hardware/soft-
ware integration problems.

System Architecture

All emulators of the HP 64000 systemuse a multiple-bus
architecture, thus allowing interactive emulation and
analysis. The development station host processor com-
municates with all installed subsystems using the HP
64000 systembus. A separate high-speed emulation bus

Intermodule Bus

AN

HP 64000 System Bus

5

WEIES:

SNV

1| High-Speed Logic Software Emulation i Emulation Emulati
'| Timing/State State/Software Performance us Eﬁeu,.lna;':,n Memory Sé’n?r!,‘i”
! Analyzer Analyzer Analyzer Analyzer Control !
VAN E 1 4%
S @ 3
' g & %
3 § High Speed Emulation Bus :
b <
=] @,
i I T
! ~
' @,
: 1z '
l Target System Bus '
: 8051 3
Target Target Family : N Emulation
H 1 Memory Micro- Pod
: controller j l/
: 09757A 11.1-1 :
Figure 10-1. System Architecture

10-4

CHAPTER 10
Third-Party Support Products

carries alltransactions required for emulation. Independ-
ent operation frees the emulation system from the host
system overhead. The intermodule bus controls sophis-
ticated, interactive cross measurements for emulation,
state, timing, and performance analysis. Major advan-
tages of the multiple-bus architecture are real-time,
transparent emulation and analysis that free the target
system for unrestricted execution.

8051/8751/8031/8053/8753
Model 64264S

Model 64264S Emulation Subsystem consists of a con-
trol board, pod, and software. Connection to the target
system is made with a 305 mm (12 in.) cable that
terminates in a 40-pin, low-profile probe. A typical 8051/
8751/8053/8753 emulation system includes HP 64264S
Emulation Subsystem, HP 64156S Emulation Memory
System, and HP 64302A Emulation Bus Analyzer.

Software development support is provided by Model
64855 Cross Assembler/Linker.

Features

¢ Real-time execution up to 12 MHz independent of
emulator/target system memory assignment

¢ Nonintrusive, real-time traces of 8051 activity for
basic analysis and evaluation including access to
- Program memory
- Internal and external data memory
— Accumulator and special-function registers
- 1/Oports 0, 1,2,and 3
Disassembly of 8051 instruction set

Program and external data memory mapped in
256-byte blocks to emulation or target system

memory

Expanded measurements capabilities through inter-
active operations with other HP 64000 subsystems:

Another 8051 emulator or any other HP 64000
emulator

HP 64620S Logic State/Software Analyzer

HP 64610S High-speed Timing/State Analyzer
HP 64310A Software Performance Analyzer

Electrical Specifications

Maximum clock speed: 12 MHz

Inputs: all inputs meet AMD specifications plus approxi-
mately 40 pF capacitance; Port 0, low-level input, 0.45
mA,; Port 1, Port 2, and Reset, low-level input, 0.1 mA;
and EA, low-level input, 0.5 mA.

Power: 20 mA drawn from the target system; all other
power supplies by the development station or card cage.

8051 Cross Assembler/Linker

The HP 64855 Cross Assembler/Linker provides assem-
bly language software development support for the 8051
Family of Microcontrollers. The Model 64855AF is
hosted on the HP 64100A/64110A development sta-
tions. Model 64855S and the appropriate option provide
a cross assembler/linker which executes on both the HP
64100A/64110A development stations and on an HP
9000 series 300 HP-UX or a VAX/VMS host computer
system.

Regardless of the host computer execution environment,
the cross assembler/linkers produce identical relocat-
able and absolute code for a given source program. The
assembler uses the instruction mnemonics for the 8051
series and generates code for all the defined 8051
instructions. However, due to differences in some
pseudo instruction mnemonics and assembler syntax
conventions, source programs written for the
manufacturer’s assembler generally require some modi-
fication prior to use with the HP 64855 Cross Assembler/
Linker.

Both assemblers/linkers generate the necessary infor-
mation for symbolic debug in emulation. Programmers
can troubleshoot the code using source program line
numbers and global symbols, eliminating the task of
looking up addresses.

Assembler Directive

“8051” causes the cross assembler/linker to recognize
the instruction set of the 8051 Family of Microcontrollers.

Reference Information

8051 Registers — The 8051 microprocessor contains
128 bytes of on-chip RAM (expandable to 65,536 bytes
with external RAM chips). Addresses 00H to 1FH in RAM
are reserved for 32 general purpose registers arranged
in four register blanks; R0-R7 indicate the eight working
registers; these registers are called the current active
bank. The current active bank can be changed to any of
the other register banks by specifying the register bank
select bits RS0 and RS1 in the program status word.

The stack is also located in the on-chip RAM and the
Stack Register points to the top of the stack. On RESET,
the stack pointeris setto 07H. The Stack Register cannot
exceed 127 (7FH in hex).

There are additional hardware registers for the 8051
which are located on an external RAM chip. The registers
and their addresses in external RAM are shown on the
following page.

10-5

CHAPTER 10
Third-Party Support Products

External RAM Registers and Addresses

ACC Accumulator OEOH

B Multiplication OFOH
DPH/DPL Data Pointer High/Low 83H/82H
IE Interrupt Enable 0A8H

P Interrupt Priority OBDH
Po-3 Ports 0-3 80H, 90H, 0AOH, 0BOH
PSW Program Status Word O0DOH
SBUF/SCON Serial Buffer/Control 99H/98H
SP Stack Pointer 81H
TCON/TMOD Timer Control/Mode 88H/89H
THO/TLO Timer 0 High/Low-Byte 8CH/8AH
TH1/TL1 Timer 1 High/Low Byte 8DA/8BH

The HP 64855 Cross Assembler/Linker supports all five
addressing modes of the 8051 microprocessor: Immedi-
ate, Data, Indirect, Bit, and Code Addressing. The ad-
dressing modes are as follows:

Immediate Addressing — Any number, symbol, or
expression may be specified as an operand by immedi-
ately preceding it with a pound (#) symbol. Examples:

#number, #symbol, #expression, #*ASCIl char”

Data Addressing — Data can be obtained from any of
the 128 on-chip RAM addresses or a hardware register
address. (External RAM data must be obtained by indi-
rect addressing.) The symbol or numeric expression
must be of either no segment type or type DSEG (ie.,
previously defined to be within the data segment). Data
addresses from 0-127 are in RAM and addresses from
128-255 are in hardware registers.

MOV A, 76H ;Move contents of address 76H to
accumulator.

Indirect Addressing — The address of the operand is
pointed to by register R0 or R1 in the active register bank
if the indirect address is in on-chip RAM. External code or
data memory is addressed by the MOVC or MOVX
instructions by using the Data Pointer Register (DPTR).
The address within RO or R1 mustbe between0-127. The
indirect mode is specified by preceding the register with
a (@). For example:

ADD A ®@RO ; Add contents of the on-chip RAM
; Address in RO to accumulator.
MOVC RO0,@DPTR; If DPTR contains 1000H, then

; move the data at address 1000H

; to register RO.

Bit Addressing — The processor can access any bit in
the on-chip RAM and other hardware registers. The byte
which contains the bit must be defined, followed by the bit

selector (.) andthe bit identifier (0-7). Opcodes using a bit
address must be defined as type BSEG or no segment
type. For example:

SETB 5CH.3 ;Set bit 3 at address 5CH.

Code Addressing — The instruction specifies a new
location to jump to in the program code.

Pseudo Instructions

The HP 64855 Assembler/Linker recognizes most of the
basic ASM51 Assembler pseudo instructions as have
equivalents for many of the others. The following lists the
pseudo instructions that are similar to the HP assembler
pseudos.

ASM 51 Assembler HP 6400 Equivalent

Pseudos Assembler Pseudos
EJECT SKIP

END END

EQU EQU
IF..ELSE..ENDIF IF..ELSE..ENDIF
MACRO..ENDM MACRO..MEND
ORG ORG

The HP 64855 Cross Assembler/Linker also supports
several additional pseudo instructions for the 8051 proc-
essor which differ from the general HP 64000 assembler
pseudos.

BIT BIT assigns a bit address to a symbol.
This allows the assembler to refer to a
specific bit.

BSEG This selects all data to be in the bit

address segment. The locations in the
bit address segment must be within the
range from 0-255.

10-6

CHAPTER 10
Third-Party Support Products

CSEG

DATA

DB

DBIT
DS

DSEG

DW

CSEG invokes the program relocatable
counter. (This is default when the as-
sembler is invoked.) The counter can
range from 0-65,535.

DATA assigns anon-chip addressto the
symbol. The symbol is defined as type
DSEG.

Stores data by types in consecutive
memory locations within the code seg-
ments starting at the current setting of
the program counter.

DBIT reserves bit address space.

This reserves or defines a block of
space by types in any segment in
memory.

DSEG selects the on-chip data address
segment. Addresses range from 0-255.

Stores data by words in memory. DW is
only valid within the CSEG or code
segment.

SET

XDATA

XSEG

The SET pseudo is the same as the HP
64000 pseudo; however, the HP 64855
assembler also uses SET to assign a
name to one of the 8051’s registers.

XDATA assigns an off-chip data ad-
dress to a symbol and makes the sym-
bol type XSEG.

XSEG selects the external data address
segment. The values in the location
counter range from 0-65,535.

The HP 64855 Cross Assembler/Linker does not support
the following HP 64000 pseudo instruction; the alternate
pseudo must be used instead.

DATA
DEC

Use XSEG or DSEG instead.
Use DECIMAL instead.

Special Note:

Hewlett-Packard has just announced a brand new
series of low-cost, host-independent emulators. The
new HP 64700 Series emulators can be connected to

a variety of hosts including the HP 9000 Series 300 and
the PC. Please contact your Hewlett-Packard Sales
Representative for an up-to-date list of supported

processors.

10-7

CHAPTER 10
Third-Party Support Products

METALINK DEVELOPMENT SYSTEM
The MetaLink Emulator, What is it?

An In-Circuit Emulator is a tool for use in designing
systems incorporating microcontrollers. Using this tool,
the system designer can interactively control and exam-
ine the state of the system at any chosentime. This is
essential for speeding up the debugging process and
enhancing the systemdesigner’s productivity. The toolis
easy to use; simply replace the system microcontroller
with the emulator probe, which then becomes the in-
circuit microcontroller. When the probe is connected
to the host computer, the system can be completely
controlled.

The emulator provides not only the capabilities of the
target processor, but a set of debugging capabilities to
facilitate and shorten the debugging process. Why is this
important? It is not enough for the emulator to simply
behave like the target processor, it must also provide
read/write access to all signals and all data to which the
microcontroller has access. This includes information
which resides inside the microcontroller. Without this
access, the engineer may not be able to completely
control and debug the system.

The many uses of the emulator can be easily visualized
after examining a typical system design cycle.

The first use of an emulator in the design cycle is in the
software-development phase. The emulator executes
the program exactly as the target system would, in real
time, and it provides all of the interactive debugging
capabilities. Software, developed using the emulator,
can be completely debugged, except for the
hardware interface, before itis integrated with the system
hardware.

The second and major use of an emulator in the design
cycle is in the integration of the target software and the
system hardware. Evenwhenthe hardware and software
have each been individually debugged, new problems
can surface when they are joined together. The emulator
is used, in this case, to solve these potential problems.

After a prototype has been completely debugged, the
emulator can then be used to test the specs of the
system. Worst case parametric tests can be developed
and tested on the prototype. This provides the designer
with valuable information about the limitations of the
system. It also provides test programs which can be used
in the manufacturing process (see below).

The third use of an emulator is in the product-manufac-
turing phase. The same test routines, used to develop
and debug the prototype, or even more comprehensive
test routines, can be used to test the finished products.
Any non-functioning units can be easily debugged using
the emulator’s full range of debugging capabilities.

PHASE

I Conception I

v

I Architecture

7

[Logic
]
k 4
[Software
]

/

[

e

B

TOOLS USED

RTL Simulator |

Logic Simulator |

weBgpe [Emulator/Simulator |

|Hardware Prototype }Amw@@[CAD/CAM Tools |

| Integration

4
[Manufacturing Testing M{

e —

Emulator |

Emulator/Tester]

¥

[Field Testing

Figure 10-2.

]

Emulator/Tester |

Design Cycle

10-8

CHAPTER 10
Third-Party Support Products

The fourth use of an emulator is in the field-service
phase. The MetaLink emulator can run on any IBM PC
or 100% PC-compatible host computer including the PC-
compatible portables. Check the end of this description
for other operating systems and host computers compat-
ible with the MetaLink emulator. If the field location al-
ready has a host computer, the field service team need
only carry the emulator module,which easily fits in a
briefcase, and some floppy disks. If a host computer is
not available, a portable host can be used.

MetaLink MetalCE or MicrolCE Emulator

The MetalCE or MicrolCE emulator is a PC-based in-
circuit emulator, designed for use in developing, testing
and debugging designs based on the 8051 Family of
single-chip microcontrollers. Using the MetalCE or Mi-
crolCE emulator, hardware and software designs canbe
developed simultaneously. The MetalCE or MicrolCE
emulator assists in the following phases: software devel-
opment, integration of target software and system hard-
ware, manufacturing and field service.

The MetalCE or MicrolCE emulator may be used with
several third-party software cross-assemblers and com-
pilers in the development phase that in the integration
phase can also provide symbolic debug capability.
These are:

* Cross-Assemblers - MetaLink’s, IAR Systems,
Enertec, Microtec Research and Intel.

® Compilers - Archimedes Software, IAR Systems
and Intel.

Significant features of the MetalCE or MicrolCE
emulators:

® Serially linked to IBM PC or compatible hosts

® Advanced menu-driven human interface

* Real-time and transparent emulation up to 16 MHz
* Disassembler and single-line assembler

* Examine/modify memory capabilities

* 16 break and trace-trigger conditions

* High Level Language Support

® Supports both modes:

— Microprocessor
— Microcomputer

* 9 probe clips
— 7 External events
— 1 External trigger input
— 1 External trigger output

* Up to 128,000 break and trace triggers

* Emulation Memory:
— 64K Program
— 64K External data

* Full symbolic debug capability
* Opcode class editor
* Up to 64K pass counts

* Separate program and data-memory mapping in
16-byte blocks

* Experiment editor/compiler

* Trace with 4K frames (MetalCE)
Trace with 2K frames (MicrolCE)

— Start, end and center triggers
Emulator Functions

Various MetalCE or MicrolCE emulators can support
different versions of the 8051 Family of microcontrollers.
See Table 10-1. They will support NMOS and CMOS
versions of the devices, up-to a clock rate of 16 MHz,
where appropriate. The MetalCE or MicrolCE emulator is
totally transparent to the users target system and will
function at the clock rate specified by the user.

The MetalCE or MicrolCE emulator functions from an
iBM PC or compatibie computer and is controiied by the
serial-interface board of the system. The serial-interface
operation rate is controlled by the user and the target-
system clock rate; 9600 bps is the maximum transfer
rate.The user interacts with the keyboard and the PC
screen, while the PC’'s RAM memory provides the resi-
dent home for the MetalCE or MicrolCE application
system and user target program.

Table 10-1. MetalCE or MicrolCE Emulator Part/Model Number Listing

Part Number Model Number AMD Devices Supported

MC-8031 MicrolCE-8031 8031 & 80C31

MC-8052 MicrolCE-8052 8031, 8751, 8753, 8051, 8053,
80C31 & 80C51

MI-80515 MetalCE-80515 80515, 80535

MI-80C521 MetalCE-80C521 80C521, 80C321 & 80C541

MC-80C321 MicrolCE-80C321 80C321 & 80C31

MI-80535 MetalCE-80535 80535

10-9

CHAPTER 10
Third-Party Support Products

User Interface

The MetalCE or MicrolCE system uses a menu driven
screen format for commands; a menu is structured as
follows:

Command1 Command2 Command3

Quick help description of Command1

MENU NAME

Errors, warnings or messages

The first line of the screen contains a list of the command
options available forthat menu. The secondline contains
a one-line description of the highlighted command (see
below). The middle of the screen contains the menu’s
name. The line at the bottom of the screen contains any
errors, warnings or messages encountered during a
command execution.

User Abilities

The MetalCE or MicrolCE emulator can perform the

following functions and call the following sub-functions:

* Load program code memory from disk files

* Upload program code memory from user target
system board

¢ Download user board external data memory from
disk files

¢ Call the system-configuration menu

* Restore a previously saved system and status

* Store the system and status in a disk file

* Create or execute a macro command file

* Call the interrogate menu

® Call the Help menu

* Terminate a session

* Escape out to and return from the resident operat-
(ing system

User Interface Selection

The user selection specifies the baud rate used and the
communications port (1 or 2) used for communication
between the MetalCE or MicrolCE emulator module and
the host computer. It also includes the mode of operation
and the configuration of the external data bus. Most
MetalCE or MicrolCE emulator models give the user the
option to select between External Address Bus Mode
(ROMuless) and Single-Device Mode (ROM) with various
external program/data memory addresses and all or
some of the 1/0 ports.

Interrogation Selection

The Interrogate portion of the MetalCE or MicrolCE
emulator allows the user to run emulation experiments
against the target system, to examine the status of the

system, to set break and trace triggers and to examine/
modify data, using the following capabilities:

¢ Running an emulation experiment
* Single stepping the target
* Resetting the target

® Setting a phantom breakpoint then running an
emulation

* Setting up to 16 simple breakpoint/trace triggers or
ranges

* Setting the repetition counter
* Setting the trace-trigger type (Start, Center or End)
® Calling the Help menu

* Examination and modification of SFRs and
registers

* Examination and modification of internal data
memory

* Examination and modification of external data
memory

Examination and modification of code memory
* Viewing the 2K or 4K trace buffer

* Examination and modification of the emulation
experiment

* Selecting the 7 probe clips for trace

¢ Setting up to 16 increment pass-count addresses or
ranges

* Escape out to and return from the resident operat-
ing system

* Viewing the A/D conversion data
* Turn Trace Trigger ON/OFF (MicrolCE)

Experiment Selection

An experiment is the specification of where breakpoints,
trace triggers or counts are to occur. It can be described
in high-level language, calledthe Experiment Language,
using the MetalCE or MicrolCE emulator software. An
experiment,then, is simply the Experiment Language
text that describes where the breakpoints are to occur.
Up to 128,000 complex hardware breakpoints, trace
triggers or counts can be set in the MetalCE or MicrolCE
emulator.

An experiment can be created outside the MetalCE or
MicrolCE environment by using any available text editor
to create an experiment text file. This file can then be
read into the MetalCE or MicrolCE system and then
interacts with the user program to cause those break-
points, trace-triggers and counts to occur.The experi-
ment uses the I/f-then condition statement as its basic
construct. Experiment statements will be of the form:

if (condition) then (action).

10-10

CHAPTER 10
Third-Party Support Products

The condition represents a breakpoint or trace-trigger
specification. Breakpoints or trace-triggers can be speci-
fied by any of the following methods:

A PC address
A PC address range

An opcode value
An opcode class
A direct byte address
A direct byte address range
A direct bit address
A direct bit address range
An immediate operand value
A read or write to bit or direct address
An external data address
An external data address range
Logical AND or OR of the above
Pass count overflow
External Input
The action represents the type of event that will occur

after the condition has been encountered. The type of
action can be specified by any of the following:

A break
An enable/trace
A count
A count/output trigger
In addition, an Examine/Modify Experiment Editor exists

that can be used to examine and modify an experiment
specification. In this editor, the user can:

Edit an experiment

Compile an experiment to set the breakpoints
Load an experiment from a disk file

Store an experiment in a disk file

Reset the current experiment

Delete the current experiment

Call the Opcode Class experiment

Examine/Modify Memory

Using the MetalCE or MicrolCE emulator, the user can
examine and modify the five memory spaces of the 8051
Family of devices. This examination/modification of
memory spaces is broken down into two areas: Program-
Code memory and Data memory.

Using the Examine/Modify Program Code Memory is
used to examine and modify the contents of the MetalCE
or MicrolCE emulator code memory and provide for the
following functions:

Disassembly of the program code (hex or symbolic
data)

Single-line assembly of the program code

Examination and modification of raw program-code
memory data

Examination and modification of program-code mem-
ory mapping

Selective mapping of the 64K program-code memory
to the emulator

Selective mapping of the 64K program-code memory
to the user

The Examine/Modify Memory Data is used to examine
and modify the contents of the MetalCE or MicrolCE
emulator internal-data memory, the external-data mem-
ory and the MetalCE or MicrolCE emulator table mem-
ory. It allows:

Dumping a block of memory content
Scanning and modifying each memory, abyte atatime
Filling a memory block with data

Moving a block of memory content from one location to
another

Searching each memory for a data pattern

Verifying and comparing one block of memory data
with another

Examining and modifying the directly addressable bits,
which are mapped to the internal-data memory space

Selective mapping of the 64K external-data memory to
the emulator system

Selective mapping of the 64K external-data memory to
the user system

Macro Capabilities

The Macro is used to create and execute macro com-
mand files. A macro command file contains groupings of
MetalCE or MicrolCE commands which, when executed
together, perform a macro function. These macro func-
tions are typically repetitious tasks that are performed
over and over again in one or many debugging sessions.
Using the macro-command facility, the designer can
define the macro-command file once and then execute it
anytime later in the same or even another debugging
session.

Symbolic Debug

The MetalCE or MicrolCE emulator supports user and
pre-defined symbols. The use of a name and not an
address can alter the content of bits, bytes and code. In
addition, five different object-file formats are accepted:
standard Intel hex-file format; Intel absolute-object-
module format; Microtek Research absolute-output-ob-

10-11

CHAPTER 10
Third-Party Support Products

ject modules; IAR, Enertec, Archimedes object modules
and Metal.ink absolute-object-file format. Standard Intel
hex-files can be created by assembling the user’s pro-
gram code with most of the currently available MCS-51
cross assemblers. Intel object-module files can be cre-
ated by linking/locating modules with Intel’s RL51 pro-
gram. These source modules can be either assembled
ASM51 object modules or compiled PLM object mod-
ules. MetalLink absolute object files are created by the
MetaLink ASM51 Macro Cross Assembler.

System Requirements
Hardware Requirements

- IBM PC or a compatible PC

- Two 5-1/4 in. double-sided/double-density floppy
disk drive

- 640K bytes of memory
- RS232C interface board

- RS8232 cable with a male connector at the emu-
lator end.

- Emulator power supply
1.5A + 5VDC * 5% (MicrolCE)
1.0A +23VDC 5% (MetalCE)

Software Requirements
- PC DOS version 2.0 or later

High Level Language Support

The MetalCE or MicrolCE emulator supports PLM and
‘C’ language compilers with advanced line number and
multi-module capabilities. Line numbers, procedures
and multi-module labels may be used for a number of
emulator operations including: trace triggers, disassem-
bly, fit, pass counts, etc. Using the MetalCE or MicroiCE
emulator, the user has the ability to single-step by ma-
chine instruction, procedure, line number in the current
module, or line-number access all modules.

10-12

CHAPTER 10
Third-Party Support Products

AMERICAN AUTOMATION
DEVELOPMENT SYSTEM

EZ-PRO 2.1 Development System

American Automation's EZ-PRO 2.1 Development Sys-
tem is a complete development environment for micro-
processor-based systems. Supporting the 8031/8051
family of microcontrollers (and over 70 other micropro-
cessormodels), EZ-PRO’s integrated tools help te imple-
ment and debug microcontroller designs. The system
includes the following:

Cross-assemblers with programmable macro
expressions

Relocating linkers with user-library support
K&R standardized C-language cross-compilers
Exceptional symbolic debuggers

Fast in-circuit emulators

EPROM programming utilities

Flexible EPROM programming hardware

File conversion utilities

American Automation’s in-circuit emulators and associ-
ated symbolic debuggers form the heart of the EZ-PRO
system. The emulators feature transparent, non-inva-
sive emulation with no wait states. Integrated break-
pointing and bus-tracing tools pinpoint problems while
the interactive assembly/ disassembly facility helps to
examine and modify the code under test. Using a
flexible memory-mapping scheme, software may be
tested inany combination of target systemand emulator
memory; software may also be tested without any target
system attached.

The powerful development hardware is backed by an
equally powerful suite of software development tools:
C-language cross-compilers, macro cross-assemblers,
relocating linkers, and the symbolic debugging package.
Each package contains several exceptional features.

The C cross-compilers feature rapid compilation
and generate tight, fast code. Extensions to the basic
C-compiler support the 8051’s special features, and
8051-series users may select from one of four memory-
saving models, designed to fit generated code into
even the tightest of spaces. Assembly-language
modules may be intermixed with C modules for even
greater speed and compactness.

The EZ-PRO Macro Relocatable Cross-Assemblers
feature not only a powerful “macro expression lan-
guage”, but also support a wide range of pseudo-opera-
tions. Each assembler conforms exactly to the
manufacturer's standard mnemonics.

aalL INK, the EZ-PRO Relocating Linker, assembles
output modules from several sources — including the
EZ-PRO assemblers and C cross-compilers — into a
final executable module. The final output file may be
easily modified by changing a command file.

Finally, the tested software may be placed into an
8751-series microcontroller or 27XX-series EPROM
using the integrated EPROM programming tools. This,
the EZ-PRO system provides a complete development
environment.

The emulators connect to a host computer through an
RS-232C link. Their modular design permits upgrades
both to support new microprocessors and to add new
features and extended memory. The 8051-emulator
features are listed below.

* A complete symbolic debugging facility

¢ Advanced breakpointing features

* Fast menu-driven system

* Operates at full clock speed with no wait states

Fully transparent emulation — all resources
available to target system

L]

* 4K Deep Trace (tm) includes trace management

Complex triggering features include ranging,
pass counts, and sequential breakpoints

* Performance analysis tools

¢ Memory-conserving C cross-compiler

¢ Macro relocatable cross-assembler

* EPROM programmer supports 8751 series
Supports NMOS, CMOS, and EPROM versions

TeleService extended service and
TelePresence remote diagnostics available

* Host systems include the IBM PC and IBM-PS/2
series, Sun 3 Workstations and Macintosh
development software and systems

¢ 5-yearwarranty

American Automation backs each EZ-PRO system with
superior customer support. This support includes a 5-
year warranty, telephone support, software updates, and
the TeleService extended service plan.

10-13

CHAPTER 10
Third-Party Support Products

HUNTSVILLE MICROSYSTEMS
DEVELOPMENT SYSTEM

Huntsville Microsystems has two low-cost in-circuit
emulators that support the 8051 family of microcon-
trollers, the SBE-51 and the SBE-31. Both emulators
support 16 MHz real-time emulation from either an inter-
nal (emulator) clock or an external (target system) clock
or crystal. They also contain a real-time trace, five hard-
ware breakpoints, an in-line assembler and a disassem-
bler; either emulator can be run from a host computer or
adumb terminal. A Relocatable Macro-Cross Assembler
and a Symbolic Debugger are available for the IBM PC
family computers and compatibles. See Table 10-2 for
available emulator packages.

The SBE-51 supports the internal or on-chip program
memory versions of the microcontroller such as the 8051,
8751H, 8753H and 8053. It is a true on-chip program-
memory emulation and does not require the use of any of
the four I/0 ports. Thus, the user has exclusive control of
all four of these ports. The SBE-51 is a non-intrusive in-
circuit emulator and does not use or restrict any of the
microcontroller’s functions. The unit contains 16K bytes
of on-chip program memory (much larger than the 4K
bytes of the 8051 or the 8K bytes of the 8053) providing
the user with the capability to download much larger
programs during the development cycle. The SBE-51
also supports the CMOS version including functions
such as idle and power-down mode.

The SBE-31 supports the external or off-chip program
memory version of the 8051 family microcontrollers,
such as the 8031AH and 80C31BH. The unit contains
64K bytes of emulation memory that may be used for

external program or external data memory. The user's
target-system memory may be added to the emulator’s
memory to complete the 128K byte address space (64K
byte program memory, 64K byte data memory). The
SBE-31 will also support CMOS designs and CMOS
functions.

Features

* Real-time emulation up to 16 MHz with five hardware
breakpoints and single step.

® 500 cycles of real-time trace history.

* 16K bytes of program memory (SBE-51)

* 64K bytes of memory, mappable in 2K blocks between
program and data memory (SBE-31)

* RS232C interface can operate with a terminal or can
be slaved to a host computer.

* Examine/modify memory, registers, flags, timer/
counters, I/0 ports, stacks and program counter.

* In-line assembler and disassembler.

® Uses internal oscillator or external oscillator or crystal.
* Upload or download Intel hexadecimal files.

* Complete software and hardware debugging facilities.

* Powerful command set includes fill-memory block,
move-memory block, compare-memory blocks and
test-memory blocks.

* Relocatable Macro-Cross Assembler and Symbolic
Debugger for the IBM-PC, XT, AT and compatibles
and all CP/M systems.

* Symbolic debugger for PL/M51 and assembly
language.

Table 10-2. Emulator Packages

Microcontrollers
Supported

Description of Emulator Package Part

8051AH, 8751H, Complete development package for IBM PC IDP-51
8053, 80C51BH, 8753H family computers (includes all five items described below):
1. 16 MHz Single Board Emulator for 8051 family on-chip SBE-51
internal program memory microcontrollers
2. Relocatable macro Cross Assembler for IBM PC family computers HMA-51R
3. Symbolic Debugger Communications package for IBM PC SBE-LS51
family computer
4. Power supply for Single-Board Emulator SBE-PS1
5. Computer-to-Emulator interface cable SBE-IC6
(RS232 - Specify if other than male/female cable)
8031AH, Complete development package for IBM PC family computers IDP-31
80C31BH (includes item 6 below and items 2-4 above)
6. 16 MHz Single Board Emulator for 8031 off-chip SBE-31
external program memory microcontrollers.
ALL ABOVE HMI-200 Series Advanced In-Circuit Emulator for the 8051/8031 HMI-200-8051

family. "C" and PL/M51 source level debugger available.

10-14

CHAPTER 10
Third-Party Support Products

MICRO COMPUTER CONTROL
8051 C COMPILER

General Description

MICRO/C-51 is an MS-DOS based C-like language
cross-compiler for the 8051 family of single-chip micro-
controllers, including the 80C521 and 80515. It is de-
signed to provide access to all hardware resources of
memory maps, interrupts, all on-chip peripherals, and
the Boolean processor directly from C.

MICRO/C-51 supports a number of important features
that provide direct access to the 8051 architecture:

* Assignment of variables to any of the five 8051
memory maps.

® C-pointer support for all 8051 memory maps.

¢ Direct C-source access to all special-function regis-
ters by name.

* C-source-level handling of 16 hardware-interrupt
sources.

* Fast-interrupt context switching to any one of four
register banks.
Chip Features Supported

Object Memory Maps
b-map - on-chip bit addressable (128 bits)
d-map — on-chip direct access (128 bytes)
i-map — on-chip indirect access (128/256 bytes)
p-map — external page zero (256 bytes)
e-map — external data (64K bytes)
c-map — external code (64K bytes)
Special Function Registers
Direct C access to all special-function registers by
name.
Boolean Processor
Direct C access to on-chip bit map and all bit-address-
able special-function registers by name.
Interrupts

Drive any C function directly from any interrupt
source.

Fast interrupt context switching to any one-of-four
register banks.

Run-time Features Supported

Math and memory-map exception handling.

Expandable pointer access to external memory-
mapped hardware devices.

Compile Time Options

Default object-memory map selection
Listing control options

Debug support
Function trace
Stack monitor
Statement labels

Compiler Output

Assembly-language source file compatible with MICRO/
ASM-51 relocatable macro assembler. Linkable with
user generated assembly or PL/M-51 source files.

C Language Features Supported

MICRO/C-51 V1.0 is a subset implementation of the
C language as documented in “The C Programming
Language” by Kernighan and Ritchie. Processor
specific extensions have been added to support micro-
controller hardware resources.

Comments (/*...*/)
Identifier names (8 characters)
Constants
Integer (decimal, octal, hex)
Character ('x')
Escape (\a,\b,\{,\n,\r,\t,\v,\\,\' * \" \ddd)
String (“string”)
Declared-object types
bit — 1-bit unsigned (K&R Extension)
char - 8-bit signed
int — 16-bit signed
ptr — 24-bit unsigned pointer to char or integer
array — single dimensioned char or integer array
func () - function return value
Options:
Interrupt driven
Using specified register bank
Storage Classes
extern — reference to externally declared object
global — objects defined outside a function
local — objects defined within a compound statement
static — restrict global object scope.

10-15

CHAPTER 10
Third-Party Support Products

Statements
compound case
if, if-else default
while break
do-while continue
for return
switch null
expression
Operators
Unary (*, & -, I, ~, ++,--)
Multiplicative (*,/, %)
Additive (+, -)

Shift (<<,>>)

Relational (<,>,<=,>=)

Equality (==, !=)
Bitwise (&, *,)
Logical (&&, |])

Conditional (?:)
Assignment (=)
Comma (,)
Preprocessors
Conditionsl (#if-#endif up to 16 nested levels)
Include Files (#include up to 8 nested levels)
Macro Definition (#define text replacement)

Separate Compilation and Linkage
Library Functions

getchar, putchar, printf, etc.

Special run-time debug functions supporting debug
operation via the on-chip serial port.

Compiler Operation

Input/Output

MICRO/C-51 accepts, as input, a C source file created
with a standard text editor. This file must have the
extension (.c). Assembly-language source output is
sent to “filename.src”. Listing and error messages are
sent to the MSDOS standard output file, normally the
console. Full path name is provided for both source and
include files.

Command Line

MICRO/C-51 has a built-in command-line processor
that permits various options (switches) to control the
compilation process. The format of the command line is
as follows.

mcc51 filename.c [/switch...]

Optional switches
¢ —include C source in assembly source output file
dc — set default memory map (¢ = b,d,i,p.e)
f — enable function trace
In — C source listing control (n = 1,2)
m — enable stack monitor
p — define processor descriptor file
wn — set warning report level (n = 0,1,2)
t — generate statement labels

Sample command line: mc51 test.c /de/I1/w0
Sample Program

The following MICRO/C-51 program initializes the 8051
serial-port and baud-rate-control registers and repeat-
edly calls on the C-library function “printf” to write the
specified text string to the serial port.

main ()

{

/* setup serial port (1200 BAUD @ € MHz) */
scon = 0x52; /* set serial port control register */

tmod = 0x20; /* set timer mode register x/
tcon = 0x69; /* set timer control register *x/
thl = 0xf3; /* set timer count x/
while (1) /* loop forever */

printf (*hello, world\n”);

}

/* write to serial port*/

10-16

CHAPTER 10
Third-Party Support Products

C module 1 >
C module 2 ——p»
C module 3 >

MICRO/C
MICRO/

ASM-51

Assembly coded module(s) >

MC51.LIB Run-Time Library

————
——>
[——» MICRO/ Execgtable
RL-51 > Object
’ Program
’ l
OBJECT TO HEX
HEX File
09757A 5-1

Figure 10-3. Modular Programming Model

Modular Programs

MICRO/C-51 works with C-source modules (files) that
contain either a complete program or part of a program.
Individual program modules can be compiled or as-
sembled separately to create relocatable object files.
The Run-Time Library consists of a series of object
modules organized into a library module. Once all the
object modules are available, the linker/locatorcombines
the object modules into a single executable program.

Assembler Relocation & Linkage
Package

Assembler

® Gives symbolic access to powerful 8051 hardware
features.

* Provides software support for many addressing and
data allocation capabilities.

* Provides symbol table, cross-reference table,
macro capabilities, and conditional assembly.

* Produces object files that can be linked
together and located at absolute addresses.

Relocation & Linkage Package

* Links modules generated by the assembler and
PL/M51.

* Locates linked object modules at absolute
addresses.

* Creates libraries of object modules and has facili-
ties for adding and deleting modules.

* Permits modules to be selectively linked from
libraries.

® Converts 8051 objects into symbolic hexadecimal
format to facilitate file-loading by symbolic hexadeci-
mal loaders (such as non-Intel PROM programmers).

The Assembler Relocation & Linkage Package is a
complete package for writing assembly-language pro-
grams to run on the powerful 8051 Family of microcon-
trollers. It includes the assembler, plus a relocation and
linkage package that also contains a librarian, and an
object-to-hex converter.

The assembleris a powerful assembly language that pro-
vides complete control over any microcontroller in the
8051 Family, enabling production of the most efficient
code possible. With the assembler, the user can refer
symbolically to many of the useful addressing features of
the 8051. Forexample, symbolic references can be used
for bit and byte locations, for 4-bit BCD arithmetic opera-
tions, for hardware registers, for I/O ports, for control bits,
and for RAM addresses.

In addition, the assembler user can break up code into
separately assembled modules, provide conditional-
assembly capabilities, and support macros to automate
frequently used code sequences.

The relocation and linkage package is used to prepare
the program for running. The linker and relocator pro-
vides the facilities for combining program modules and
assigning absolute addresses. The librarian gathers
modules into a library where they can be accessed
individually by the linker. The hex converter converts
8051 object modules into hexadecimal form in prepa-
ration for loading into ROM.

10-17

CHAPTER 10
Third-Party Support Products

C Tools Tackle uC Software Bottlenecks
by Ed Thompson, Software Engineer
Micro Computer Control Inc., Hopewell NJ

Designing applications based on a single-chip micro-
computer requires both hardware and software engi-
neering skills. Butthe balance of these skills is changing
as chip makers improve on-chip hardware capabilities at
the expense of increased software complexity.

This change in the development environment has cre-
ated a vigorous demand for alternatives to the time-
honored assembly language coding method. Now, new
development tools, based on C, promise to tackle this
software bottleneck.

To the delight of many a hardware engineer, a wide
variety of complex semiconductor devices is finding a
welcome home on single-chip microcomputers. These
include A/D converters, DMA controllers, intelligent
communication receiver/transmitters, pulse-width
modulators and event capture circuitry. This steadily
growing engineers’ wish list of on-chip resources is
pushing single-chip microcomputer application in prod-
ucts that only a year ago would have required a boardful
of chips.

Accelerating Demands

With this increased integration, however, comes a need
for complex interfacing and control programming. De-
mands on software to control memory, interrupts and
sophisticated peripheral devices are outpacing past
design methods and leading to the adoption of program-
ming methods once found solely in the realm of micropro-
cessor-based designs.

Akey areathat is receiving a great deal of interest is the
use of high-level languages for single-chip microcom-
puter program development. Although most of today’s
microprocessor-based projects use a high-level lan-
guage as the primary coding language, this considera-
tion has only recently been adopted on single-chip proj-
ects.

In the past, the limited size and complexity of the function
to be coded and the lack of efficient high-level language
compilers have restricted their consideration. But today
the high cost of both software development and mainte-
nance and the availability of efficient PC-based high-
level language cross-compilers are quickly changing
the way single-chip microcomputer programs are being
developed.

Over the past five years, the C language, developed by
AT&T for coding the Unix operating system, has gained
an immense following in a broad range of applications.
Whether C is best suited for all these diverse applications
is another question.

However, since C was designed as an extensible, struc-
tured system-building language, it can support both high-
level programming structures and low-level hardware
interfaces. This capability, combined with some chip
support extensions and an efficient code-generating
implementation, make C worthy of consideration in
single-chip microcomputer applications. One such im-
plementation is Micro Computer Control's Micro/C-51 C
compiler for the 8051 family of single-chip computers.

C comes with a long list of high-level statements and
operators used to create structured programs that are
quick to develop and easy to understand and maintain.
But since C was not designed to cope with the special
problems presented by single-chip microcomputers, a
few well-chosen extensions are needed to make C a
natural for this type of application. Three such exten-
sions, implemented in Micro/C-51, are direct C support
for memory maps, interrupts and access to on-chip
peripherals.

The architecture of most single-chip microcomputers
uses several memory maps. The 8051, being no excep-
tion, has no less than three on-chip and three off-chip
memory maps. Memory size and access speed differ for
each map. A problem arises in controlling the place-
ment of variables in these various memory maps. One
way to cope with this problem is to permit each
declared C variable to be assigned to any map, thus
providing easy adaptation to various target system
memory configurations.

In addition to memory maps, interrupts also play an
important role in most single-chip microcomputer appli-
cations. These interrupts are generated by internal or
external peripheral devices, and indicate need for serv-
icing by the processor. In some cases, up to a dozen or
more interrupt sources must be serviced quickly. Sup-
port for interrupts could take the form of enabling a
developer to assign any C function as the target of any
interrupt source.

© 1987 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030
Reprinted with permission of Electronic Engineering Times Issue 425, Monday, March 16, 1987

10-18

CHAPTER 10
Third-Party Support Products

Access to peripheral devices presents a problem in any
high-level language. Because single-chip microcompu-
ters are used primarily in control applications, they espe-
cially demand a convenient and efficient access method
to the increasing variety of on-chip peripherals. Here, a
solution is to be able simply to use the name of a
peripheral in a C expression to directly access the speci-
fied device. With such a simple yet powerful technique,
even low-level device drivers become candidates for
coding in C.

Software Debugging

With their integrated form of processor, memory and
peripherals, single-chip microcomputers typically pres-
ent a challenge to debugging efforts. Programmingin a
high-level language not only can reduce the entry of bugs
in a program, but also can help in tracking them down.

The introduction of programming errors is reduced in
several ways. Most reasonably, the fewer lines of high-
level code needed to program a function simply reduces
the chance of typographical errors that could go unno-
ticed. The procedural programming structure offered by
C also helps in organizing the programming effort.

Nevertheless, the likelihood of creating a bug-free pro-
gramis low. To help find the bugs, C debugging options
can open the on-chip resources to inspection.

Single-chip microcomputers have provento be animpor-
tant product, and undoubtedly a host of new capabilities
and architectures will soon emerge. As with micropro-
cessors in the past, programming in a high-level lan-
gauge will help protect a company’s investment in soft-
ware when the time comes to exploit these new chips.

10-19

CHAPTER 10
Third-Party Support Products

ARCHIMEDES C-8051 COMPILER

The Archimedes Microcontroller C-8051 Cross Compiler
Kit supports software development for any chip based on
the 8-bit 8051 microcontroller instruction set, e.g. 8051,
80C521, 80515 and other proliferation chips.

The C-8051 Kit consists of several pieces. The ANSI-
standard C-compiler gives all the traditional high-level
language advantages — faster coding, debugging and
code maintenance resulting in more reliable code. The
macroassembler is useful in optimizing any time-critical
sections of code. It also preserves assembly code invest-
ment by reassembling existing source code with the
Archimedes assembler (which is linkable with C code).
The assembler is highly compatible with other 8051 as-
semblers. A librarian creates and maintains libraries. The
linker combines C and assembly modules and places
code anddata at the right locations. The linker’'s numerous
output formats make it quick and easy to support standard
PROM programmers and emulators. (See Figure 10-4.)

Archimedes Microcontroller C-8051 is available on most
popular software development hosts: IBM PC and com-
patibles, MicroVAX and VAX systems running either VMS
or UNIX (Ultrix or Berkeley). All versions are fully compat-
ible, e.g. compile module 1 on a PC, module 2 on a
MicroVAX/Ultrix system and link them on a VAX/VMS
system.

Several Memory Models

The Archimedes Microcontroller C-8051 Kit has several
memory models to best meet the requirements of different
microcontroller designs, similar to 8086 small and large
models. Memory models range from a small model using

only the internal RAM (128/256 bytes) of an8051 Family
chip to a bankswitching model supporting upto 8
Mbytes of code. The different C-51 memory models are:

Small (single-chip) memory model: Supports 8051
configurations using internal RAM only. C variables
andthe run-time stack reside within internal RAM (128
or 256 bytes).

Medium (expanded) memory model: Supports
microcontroller applications with a combined total of
64K code anddata. Requiresthatthe Program Status
ENable signal (PSEN) is AND-ed together with the
Read Data signal (RD), to create a uniform 64K
address space. C variables and the run-time stack
reside in external data memory.

Large (expanded) memory model: Supports micro-
controller applications with 64K of code and 64K of
data. C variables and the run-time stack reside in
external data memory.

Banked memory model: Supports microcontroller
applications with 84K of data and up to 8 Mbytes of
code. C variables and the run-time stack reside in
external data memory.

All memory models offers two approaches on how to
allocate variables - reentrant or static. In the reentrant
modes, all local “auto variables” are allocated and
deallocated dynamically, i.e. they reside on a stack
required to support recursive or reentrant functions. In
the static modes , all function-level variables are forced
into static memory with the exception of function argu-
ments which are always on the stack.

ANSIC [----- LIBRARIAN |----- MACRO ASM
LINKER
" PROM
I Simulator I l Emulator Programme(] [Target System

oaTsTA 11

Figure 10-4. CKit

10-20

CHAPTER 10

Third-Party Support Products

Table 10-3. Overview of Memory Models

Memory Banked Banked Expanded Expanded Small Small
Model Reentrant Static Reentrant Static Reentrant Static
Typical chip 8031 8031 8031 8031 8051 8051
External RAM Yes Yes Yes Yes No No
Code Area >1M >1M 64K 64K 64K 64K
Recursion Yes No Yes No Yes No
C Interrupt Yes Limited Yes Limited Yes Limited
Routines
C Variable Ext. RAM Ext. RAM Ext. RAM Ext. RAM Int. RAM Int. RAM
Area (64K) (64K) (64K) (64K) (256) (256)
Relative Speed Low Low Low Medium Medium High
Relative Code Medium Medium Medium Medium Medium High
Compactness

PROMable Code In addition, the C system contains C run-time libraries

PROMable code is a must for microcontroller applica-
tions. Archimedes supports PROMable code fully, in-
cluding statically initialized data and static data without
explicit initializers set to zero. The compiler has a simple
invocation at compile time (-P) to automatically generate
PROMable code.

C-Libraries

CHARACTER HANDLING <ctype.h>
isalnum, isalpha, iscntrl, isdigit, islower, isprint,
ispunct, isspace, isupper, tolower, toupper

NON-LOGICAL JUMPS <setjmp.h>
longjmp, setjmp

FORMATTED INPUT/QUTPUT <stdio.h>
getchar, printf, putchar, sprintf, _formatted_write

GENERAL UTILITIES <stdlib.h>
exit, calloc, free, malloc, realloc

STRING HANDLING <string.h>
strcat, stremp, strepy, strlen, strncat, strnemp, strnepy

MATHEMATICS <math.h>
atan, atan2, cos, exp, log, log10,pow, sin, sqrt, tan

Archimedes C-8051 Compiler provides the most impor-
tant C-library functions for stand alone “embedded mi-
crocontroller applications”. “printf” can be used to make
debugging easier or as the starting point for writing
applications-specific display device drivers. Advanced
math routines speed up number-intensive applications.

that are divided into 100+ small modules. By design, only
those routines required by a particular program are
called in at link-time to minimize run-time requirements
(minimum 500 bytes; 2-3 kbytes for a typical application).
All library routines are reentrant.

Fast Compilation

Single pass compilation, without any unnecessary as-
sembly step, compiles 7000 lines of C source codein less
than 30 seconds on a Compaq 386 system.

Fast Testing

ANSI-standard C makes it possible to compile “generic”
C source code with different ANSI-standard C-compilers.
Host-resident tools like Microsoft's C-86 compiler and
CodeView debugger speed up testing of generic C-8051
code. (See Figure 10-5.)

ANSI-Standard Power and Features

ANSI-standard C has some extra features over and
above the traditional K&R C language definition. Func-
tion prototyping allows function declarations a la Pascal
with the conversion conventions of C. This speeds up
software development and produces more efficient code,
by avoiding some of the default conversions to “int” that
is typically required in older C compilers. “Structure” and
“union” assign and “enum” types give the same facilities
enjoyed by Pascal users. Flexible “auto” initialized ag-
gregates like arrays, structures and unions provide one
more option to keep vital data local to a function rather
than making everything global.

10-21

CHAPTER 10
Third-Party Support Products

Archimedes
Cc

09757A 11-6.2

Figure 10-5. Testing using Host Tools
like Microsoft C-86

All the Standard ANSI Data Types

Archimedes C-8051 compiler supports allthe basic ANSI
C elements. Object sizes in bytes:

char short int long float pointer/addr
1 12 2 4 4 2

“Float” is implemented in the IEEE 32-bit single-preci-
sion format.

LINT-type Feature

The software has a built-in advanced type-checking
scheme to eliminate difficult to find “typing errors” and to
speed up integrating different modules. The C compiler
checks a module, whereas the linker checks consistency
of inter-module declarations (down to the last bit of a
complex structure). This facilitates interfacing of librar-
ies, or other routines only available in object format,
as well as integrating modules written by different
programmers.

Error Message System

To speed up error searching the C compiler has a state-

of-the-art built-in error message system (invoked by the

-V switch). The system indicates the exact source code

location and a message describes the error detected:
if (1)) j++

A

“main.c”, 870 Error (110): ‘)’ unexpected

C Language Extensions and Other Specials

The Archimedes C-8051 kit has special C language
extensions, or built-in in-line functions, to better take
advantage of a chip’s special features and speed up
development. “input” and “output” provide access to
internal RAM/special function registers. Functions like
“set bit” and “clear bit” are available to support bit manipu-
lation. Also, functions are available to read blocks of code
and data.

The C compiler has several special listing options. It can
for instance generate a pure assembly source file (-A
option), which can be hand-optimized and then reas-
sembled with the macroassembler. A list file with
mixed C source and native assembly code speeds up
debugging. The C compiler supports symbols with up to
255 significant characters.

Linker

The linker combines C and assembly modules and
automatically links in the necessary C run-time libraries
(including the C start-up routine). The flexible linker
locates memory segments at absolute or relocatable
addresses. The linker's many output options provide fast
and easy interfacing with most PROM-programmers and
emulators. The Archimedes kit generates symbolic de-
bug information for global and local static variables as
well as line numbers. The linker also generates load
maps and module/symbol cross-reference listings to
make debugging faster.

C — the Right Choice for the Right Project

Why spend months of extra development time to save
some money on memory chips? Constantly lower
memory prices have reduced the need to save on every
byte of memory. Typically, only in high-volume applica-
tions, do the cost savings in memory chips from assem-
bly programming justify the extra costs in development
time. (See Figure 10-6.)

In low and medium volume applications, C is the right
choice. Development time and costs are cut by at least
50% and the product goes out the door faster—all for
minimal extra memory costs per system.

10-22

CHAPTER 10
Third-Party Support Products

C is also the right choice for projects on a tight time
schedule and for any products requiring complex soft-
ware development. Assembly programming might be
best if most code is very time-critical.

Archimedes Microcontroller C-8051 Kit comes with both
a C compiler and a macroassembler to provide optimal
flexibility. C speeds up software development and the
macro assembler can be used to optimize time-critical
sections of code, where necessary.

HIGH
(>10,000)

Annual
volume of
micro-
controller
based
product

LOW
(<10,000)

09757A11-6.3

Figure 10-6.

SHORT LONG
Development Time—————»

C - Right Tool for the Right Project

10-23

CHAPTER 10
Third Party Support Products

DATA /O PROGRAMMERS

How Programmers Work

Programmers apply very specific voltages to device pins
to “blow” a fuse and thereby record a value, either
memory or logical. Programming waveforms are gener-
ated from raw programmer power supplies using regula-
tors controlled by the programmer’s microprocessor.
The specific power, rise and fall, etc. of the charge are
specified by device-specific algorithms recorded within
the programmer.

Values for programming variables, including pinouts,
voltage levels and timing, are stored in firmware or floppy
tables. When a particular device is chosen, the program-
mer uses information stored in these tables to assemble
a device-specific programming routine in scratch RAM.
Device pinout variations are handled by different device
sockets, cartridges or modules on the programmer or
pak. Newer programmers such as Data I/O’s UniSite can
program any device up to 40 pins on one socket. To
maximize control speed during programming, the pro-
grammer and pak make extensive use of addressable
latches for control signals.

Programmers range in price from under $500 to over
$15,000. Along with basic capability, part of the price
differential is the result of more established programmer
manufacturers establishing a system of seeking semi-
conductor manufacturers’ approvals for device support.
Data I/O works closely with the device makers to support
a new device before silicon is available. When samples
are available the device maker approves device support.

Programmer Controls

Data I/O programmers can obtain data from three
sources; a master device, a serial port/disk drive, orfrom
the keyboard. Master devices are first copied into the
programmer RAM where the code can be edited at the bit
level or copied onto other media. Code can be edited
using the integral keyboard or by loadingitinto a PC and
editing it onscreen. On most Data I/O programmers, a
standard terminal will also enable the code to be edited
on screen.

PROMIink is Data I/O’s optional PC-based control soft-
ware for all of Data I/0O’s programmers. It enables the
user to control any programmer from a simple menu
system, storing data and configuration files on hard or
floppy disk. Itallows simple bit-editing functionsin ASCII
or Hex and will convert from one to the other. It also has
a simple device labeling function using a standard
PC printer.

Programmers can be networked and assigned a node
identification on most workstation networks, such as PC,
UNIX or VAX. This allows centralized device data stor-
age for both engineering and testing groups and facili-
tates data transfer. An engineer can develop a design at
a PC or workstation node and download to a remote
programmer.

Device files are generally kept on disk or on master
devices. Programmers require updates to be able to
program the most current devices and these updates are
also provided on firmware, i.e. programmed devices, or
floppy disks. Data I/O offers annual update services
which automatically keep a programmer at the most
current revision.

All data transfer or verification operations take place
between the programmer’s internal RAM and the device
or between the RAM and serial port or floppy drive in the
programmer. Because the operation procedure to trans-
fer data via a serial port varies from programmer to
programmer, we will describe data transfer with the most
widely used system. Allofthese functions canoccurfrom
the programmer front panel or from a remote terminal.

Typical Programmer Operation Steps

* Load RAM with data from a master device.

* Press COPY and the programmer will prompt
COPY DATA FROM.

* Select DEVICE and the programmer prompts
DEV *ADDR/SIZE TO.

* Select RAM and the programmer prompts
CO DEV>RAM * ADDR.

* Press START and the programmer will lead
through the device selection process to identify

master device type.

* Place the master device in the main programmer
socket and press START to load data into RAM.

From RAM it can be programmed into a device
different from the master or stored on floppy disk.

* Verify RAM against the master device.
* Program a new device with RAM data.

Data editing is possible while data is in RAM. The
programmer allows simple bit editing on the internal LED
command line screen or on a remote terminal or PC.
Using PROMIink for full screen editing on a PC allows
editing/input in ASCII or Hex and automatic conversion
from one to the other.

10-24

CHAPTER 10
Third Party Support Products

Set programming allows the downloading of an entire
data file into RAM (up to a maximum of 512K bytes on
most programmers with 1 Mbyte coming soon) in one
operation. The data is automatically split according to
word width into as many devices as required, which are
then programmed sequentially.

Programmer Types and Technology

An“Engineering” programmer is generally a stand-alone
one-device-at-a-time programmer. Models are available
that do memory only, logic only or memory and logic.

Inexpensive memory-only programmers are often ap-
propriate for the first-time user. They are usually in the
$1,000 range for a name brand and generally support
MOS/CMOS EPROMs and EEPROMSs up to 512K bits.
The better ones support 8-,16- and 32-bit-wide words
and may be run from the front panel keyboard or by an
optional PC interface.

Universal logic and memory programmers are the “work-
horse” engineering programmers. Mostengineers prefer
them for their flexibility and adaptability to future device
needs. They generally consist of a mainframe unit con-
taining the power supply, primary microprocessor,
memory, keypad and control functions. Modules or paks
are then added to characterize the mainframe for mem-
ory, multiple memory or logic (see page 10-26). The most
popular units translate data from 29 or more popular
formats and have up to 1 Mbyte of internal RAM.

Functional Specifications for the Data I/O 29B
System:

® General Architecture: Microprocessor controlled
¢ Data RAM: 256 x 8 standard, upgrades available
to 1 Mbyte

* Programming Support: GangPak, LogicPak,
UniPak 2B, MOSPak, and programming modules

* Keyboard: 16-key hexadecimal and 9-key func-
tional

® Functional keys:
Copy: Used to move a block of data to or from a
serial port, RAM, or device. Works in conjunction
with source/destination keys.
Verify: Used to make a byte-by-byte comparison
of a block of data. Used with source/destination
keys.

Select: Prepares the programmer to accept
codes for select functions.

Edit: Allows viewing and changing of data at
individually selected RAM address locations

* Display: 16-character alphanumeric

° |Input/Oulput: Serial RS-232C and 20mA current
oop

* Baud Rates: 50, 75, 110, 134.5, 150, 300, 600,
1200, 1800, 20(50, 2400, 3600, 4800, 7200, 9600

* Remote Control: PROMIink (MS-DOS) optional
Computer Remote Control (CRC)
Terminal Remote Control (SRC)

* Translation Formats: 29 available

* Handler Capability: Optional handler port is
available for binning and control signals

Pin-driver technology programmers are the newest pro-
gramming technology. They use a dedicated voltage
driver for each pin, enabling each programming socket
pin to be configured by software to execute device-
specific information including voltage, current, logic
level, ground and Vcc outputs.

Gang programmers or gang programming paks have a
master socket and usually seven slave sockets. They
are useful in the engineering environment or limited
production runs, to run small batches of identical parts or
to do set programming. In the set-programming mode,
most gang programmers allow several sets to be pro-
grammed at once.

Production programmers are high-throughput program-
ming and test fixtures intended for the production floor.
For devices that program rapidly, the most common
method is serial programming, whereby a single-socket
programmer is connected to an automatic device handler
that runs chips individually by a programming/test head.
Most memory devices program most efficiently on a
parallel programmer whereby 10 or 20 devices are
loaded into individual programming/test sockets and are
programmed at once. More recently designed models
such as Data I/O’s Series 1000 have “rails” whereby the
device sockets are aligned end to end and entire tubes
can be smoothly loaded, programmed and unloaded.
Sophisticated production programmers such as Data
1/0’s Series 1000 can also serialize devices in specified
areas of device memory, label devices and provide
simple code-editing capability.

The programming pass also includes tests for continuity,
incorrectly inserted devices and a data comparison with
RAM. On programmers like the Series 1000, full pro-
gramming pass/fail statistical data is accumulated by
time of day, socket and device. Calibration is automatic
and production statistics can be stored on disk.

10-25

CHAPTER 10
Third Party Support Products

In-circuit programming entails programming a device or
devices already mounted on a board. The program-
mable devices are soldered in place and programmed
through a specially designed edge-connector. Boards
must be designed from the beginning to accommodate
the technology and to protect microprocessors from
higher voltages. For certain types of applications the
additional effort can be worth it. Typical reasons for
adopting an in-circuit design include the elimination of
additional device handling and increased board reliabil-
ity. Specific reasons for avoiding individual device pro-
gramming include the following:

¢ High device count per board statistically in-
creases the chance of physically damaged
devices during handling.

* Frequently updated code, requiring excess
removal, downtime or additional boards to control

the board float.

* Surface-mount devices particularly defy modifica-
tions if they are not in-circuit programmable.

* Soldered-in designs, especia@r military design
specs which often require soldered-in devices,
are difficult or impossible to remove.

Data I/0 supports the full line of programmable products
from AMD including the 87C51, 87C52T2, 87C521,
87C541, 8751H and 8753H microcontrollers.

Programmer Systems Overviews

Unisite 40 supports every microcontroller, PROM,
EPROM, EEPROM, PLD, IFL and FPLA thatfits in its 40-
pin DIP socket. The optional ChipSite module adds a
single site for PLCCs, LCCs and SOICs. Unisite 40 uses
universal pindriversto drive each pinto any state needed
to program andtest a programmable device. The system
provides 128K bytes of RAM and two disk drives as
standard; 1 Mbyte of internal memory is available on
order. Updates are provided on 3 1/2" floppy disks.

The 29B System provides a universal system for pro-
gramming, testing and verifying a variety of memory and
logic devices. The 29B can be tailored to specific pro-
gramming needs by selecting the appropriate program-
ming pak, shown below, and simply plugging it into the
29B.

Programming Paks

* Unipak 2B programs more than 1200 devices,
including MOS and CMOS EPROMs and

EEPROMs, fuse link, AIM and DEAP bipolar
PROMs. Simple pinout cartridges are available
for 40-pin microcomputers and parts with non-
standard pinouts and unique package types
(LCC, PLCC).

* LogicPak combined with appropriate plug-in
adapters, allows you to design, program and
functionally test more than 440 different logic
devices.

10-26

CHAPTER 11

Package Outlines

Plastic Dual-in-Line Package

Ceramic Hermetic Dual-in-Line Packages
Plastic Leaded Chip Carriers

Ceramic Leadless Chip Carriers

P
N

o
N

e
I
(&}

-
@
o

CHAPTER 11
Package Outlines

PHYSICAL DIMENSIONS*

Plastic Dual-In-Line Package (PD)
PD 040

2.040

|t P
r 2.080
o o o o e e s 1 s o 1 o 1 o s O o o O o o O

530
.580
5y O O - l__
PO
._.>| iq—- —] .005
.045 090 MIN.
065 .110
e 580 o
015 .620
T - 060 —
0 008
5§ .015
7
I v

1

. ot

PID# 068238

* For reference only.

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

o

I

C]

(4]

CHAPTER 11
Package Outlines

Ceramic Hermetic Dual-In-Line Packages (CD/CDV)

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

CD 040
2.035
2.080 .098
I MAX
oo o e e
565
) o
! $
o —
| S e gy Sy Sw— S gy m—) | SR g SR G I R GRS R GHED G SN M SH R S R S g Smm g wm gy -)
| 1
.050 -100
—r BSC 005
.065 MIN
590
015 815
060
I : 008
160 * o M 012
222’ —¥ hd 150
:‘}?‘g g MIN
.700
-r 022 MAX
06824C
CDV 040
2.035
2.080 . 098
l MAX
o B o B e N e B e O e N e N e O s O s O s O e I e O s B s B s B e O o B o |
565
.605
1
[¢]
| 100 !
.050 .
DRE BSC .005
.065 MIN
.590
015 GERE
.060
2% i v o [o1
22'—" __T b 150
125 :
160 e’ 00 MIN
r —|e— 015 H——MAX—H
.022
07880C

CHAPTER 11
Package Outlines

Plastic Leaded Chip Carriers (PL)

PL 044
042 050
048 : .042
REF. —<
— "’rl-' —;056
OO0 1 BININIRIN
b O o -
045 [|
TYP.] |
<5 L. — 026
.695 —] 655 -
-650 - - ’
.656]]
]]
- |
- |
(. |
-
! m Tle 009
.090 015
650 120 | 165
B .656 615 — e 175
695

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

CHAPTER 11
Package Outlines

Ceramic Leadless Chip Carrier (CLV)
CLV 044

44 PLACES

/_(11x11)

o~ -
oos ¥ 015 MIN. g M
022
¥ o S S g 2
]
.080
003 _] !] 140
015
.054
.088
- N I [=
3
S 840
o 660
o
@
N / J' l g
| —— 625 MAX.—]
< 840
- 660 v
PID #09703C

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

Sales Offices

North American

ALABAMA ... (205) 882-9122
(602) 242-4400

CALIFORNIA,
Culver City (213) 645-1524
Newport Beach . ..(714) 752-6262
Roseville(916) 786-6700
San Diego ..(619) 560-7030
San Jose(408) 452-0500
Woodland Hills .. 818) 992-4155

CANADA, Ontario,
Willowdale ..

(613) 592-0060
~(416) 224-5193

COLORADO .. (303) 741-2900
CONNECTICUT . ..(203) 264-7800
FLORIDA,

Clearwater .. .(813) 530-9971

Ft. Lauderda

305; 776-2001
Orlando (Cass

..(407) 830-8100

GEORGIA (404) 449-7920
ILLINOIS,

Chicago (Itasca) .. (312) 773-4422

Naperville.... ..(312) 505-9517
KANSAS ‘.2913 451-3115
MARYLAN ..(301) 796-9310
MASSACHUSETTS . ..(617) 273-3970
MICHIGAN(313; 347-1522
MINNESOTA(612) 938-0001
NEW JERSEY,

Cherry Hill 609) 662-2900

Parsippany 201) 299-0002
NEW YORK,

Liverpool (315) 457-5400

Poughkeepsie ..(914) 471-8180

Rochester(716) 272-9020

NORTH CAROLINA..
OHIO,
Columbus (Westerville)
Dayton.....
OREGON
PENNSYLVA

-(919) 878-8111

..(614) 891-6455
~(513) 439-0470
..(503) 245-0080
..§215 398-8006

(803) 772-6760

(51 2; 346-7830
~(214) 934-9099
(713) 785-9001

lnternatlonal

BELGIUM, Bruxelles(02{ 771-91-42

FRANCE, Paris 51; 28 ;g }8 }g

263282F

...(0511) 736085
(0511) 721254
22850

WEST GERMANY,
Hannover area

Minchen ..o
089) 406490
............. 52388
Stuttgartooevee (0711) 62 33 77
(0711) ;3‘15!87
HONG KONG,coccec. 852-5-8654525
Wanchai 852-5-8654335
67955AMDAPHX
ITALY, Milancccceeee
JAPAN, :
Kanagawa.........ccco...462-47-2911
. 462-47-1729
TOKYO et . .(03) 345-8241
. .(03) 342-5196
..J24064AMDTKOJ
....06-243-3250
...06-243-3253

International (Continued)
KOREA, Seoul L

LATIN AMERICA,
Ft. Lauderdale

....822-784-0030
...822-784-8014

(305) 484-8600
305) 485-9736

TLX .. .51095 4261 AMDFTL
NORWAY, Hovik.............. TEL(03) 010156
FAX .. ;02) 591959
TLX .. 9079HBCN
SINGAPOREccceoeuue TEL.. .65-3481188
FAX i 65-3480161
...556650 AMDMMI

SWEDEN,
Stockholm T ...{(08) 733 03 50
(Sundbyberg) FAX.. (08) 733 22 85
TLX s 1602
886-2-7213393

TAIWAN .o TEL ..
. . 886-2-7723422
..886-2-7122066

..(0925) 828008
0925) 827693

UNITED KINGDOM,
Manchester area
(Warrington)

..... 851-628524
London area................. (0483) 740440
(Woking) (0483) 756196
851-859103
North American Representatives
CANADA
Burnaby, B.C.
DAVETEK MARKETINGcccccovinnrriniiins (604) 430-3680
Calgary. Alberta
VETEK MARKETINGccooccovviinmiiininiinns (403) 291-4984
Kanata, Ontario
VITEL ELECTRONiCS {613) 592-0080
Mississauga,
VITEL LECTRONICS (416) 676-9720
Lachine, Quebec
DXI-'l-gEL ELECTRONICS ...t (514) 636-5951
|LLI|':IEE|2MOUNTA|N TECH MKTG, INC (208) 888-6071
HEARTLAND TECH MKTG, INCcc..c. (312) 577-9222
INDIANA
Huntington - ELECTRONIC MARKETING
CONSULTANTS, INC....ccocoevieiccceen (317) 921-3450
Indianapolis - ELECTRONIC MARKETING
IOV(\:I?NS LTANTS, INC ..o (317) 921-3450
LORENZ SALES ...t (319) 377-4666
KANSAS

Merriam —LORENZ SALES ...

Wichita - LORENZ SALES
KENTUCKY

ELECTRONIC MARKETING

CONSULTANTS, INC.....coeiiiiiiieceen (317) 921-3452
MICHIGAN

Birmingham - MIKE RAICK ASSOC[ATES .(313) 644-5040

Holland —- COM-TEK SALES, INC(616) 399-7273

Novi - COM-TEK SALES, INC ..(813) 344-1409
MISSOUR!

...(913) 384-6556
..(316) 721-0500

|

LORENZ SALES ..o (314) 997-4558
NEBRASKA

LORENZ SALES ..o (402) 475-4660
NEW MEXICO

THORSON DESERT STATEScccovvvevene. (505) 293-8555
NEW YORK

East Syracuse — NYCOM, INCccccceuee. (315) 437-8343

Woodbury — COMPONENT
OH(II()NSUL ANTS, INC ..o (516) 364-8020

o

Columbus - DOLFUSS ROOT & CO(614) 885-4844

Strongsville - DOLFUSS ROOT & CO (216) 238-0300
PENNSYLVANIA

DOLFUSS ROOT & COcovvreiece (412) 221-4420

PUERTO RICO
COMP_REP ASSOC, INC .. 2809 746-6550
...(801) 595-0631

UTAH, R2 MARKETING ..
WASHINGTON

ELECTRA TECHNICAL SALES..................... (206) 821-7442
WISCONSIN

HEARTLAND TECH MKTG, INC(414) 792-0920

Centerville — DOLFUSS ROOT & CO (513; 433-6776

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

Advanced Micro Devices, Inc. 301 Thompson Place, P.O. Qox 3453, Sunnyvale, CA 94088, USA
‘ Tel: (408) 732-2400 + TWX: 910-339-9280 * TELEX: 34-6306 * TOLL FREE: (800) 538-8450

APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323

+ (408) 749-5703

© 1989 Advanced Micro Devices, Inc.

8/9/89
Printed in USA

Notes

	02095083 amd 1990 09757B.tif
	02095084.tif
	02095085.tif
	02095086.tif
	02095087.tif
	02095088.tif
	02095089.tif
	02095090.tif
	02095091.tif
	02095092.tif
	02095093.tif
	02095094.tif
	02095095.tif
	02095096.tif
	02095097.tif
	02095098.tif
	02095099.tif
	02095100.tif
	02095101.tif
	02095102.tif
	02095103.tif
	02095104.tif
	02095105.tif
	02095106.tif
	02095107.tif
	02095108.tif
	02095109.tif
	02095110.tif
	02095111.tif
	02095112.tif
	02095113.tif
	02095114.tif
	02095115.tif
	02095116.tif
	02095117.tif
	02095118.tif
	02095119.tif
	02095120.tif
	02095121.tif
	02095122.tif
	02095123.tif
	02095124.tif
	02095125.tif
	02095126.tif
	02095127.tif
	02095128.tif
	02095129.tif
	02095130.tif
	02095131.tif
	02095132.tif
	02095133.tif
	02095134.tif
	02095135.tif
	02095136.tif
	02095137.tif
	02095138.tif
	02095139.tif
	02095140.tif
	02095141.tif
	02095142.tif
	02095143.tif
	02095144.tif
	02095145.tif
	02095146.tif
	02095147.tif
	02095148.tif
	02095149.tif
	02095150.tif
	02095151.tif
	02095152.tif
	02095153.tif
	02095154.tif
	02095155.tif
	02095156.tif
	02095157.tif
	02095158.tif
	02095159.tif
	02095160.tif
	02095161.tif
	02095162.tif
	02095163.tif
	02095164.tif
	02095165.tif
	02095166.tif
	02095167.tif
	02095168.tif
	02095169.tif
	02095170.tif
	02095171.tif
	02095172.tif
	02095173.tif
	02095174.tif
	02095175.tif
	02095176.tif
	02095177.tif
	02095178.tif
	02095179.tif
	02095180.tif
	02095181.tif
	02095182.tif
	02095183.tif
	02095184.tif
	02095185.tif
	02095186.tif
	02095187.tif
	02095188.tif
	02095189.tif
	02095190.tif
	02095191.tif
	02095192.tif
	02095193.tif
	02095194.tif
	02095195.tif
	02095196.tif
	02095197.tif
	02095198.tif
	02095199.tif
	02095200.tif
	02095201.tif
	02095202.tif
	02095203.tif
	02095204.tif
	02095205.tif
	02095206.tif
	02095207.tif
	02095208.tif
	02095209.tif
	02095210.tif
	02095211.tif
	02095212.tif
	02095213.tif
	02095214.tif
	02095215.tif
	02095216.tif
	02095217.tif
	02095218.tif
	02095219.tif
	02095220.tif
	02095221.tif
	02095222.tif
	02095223.tif
	02095224.tif
	02095225.tif
	02095226.tif
	02095227.tif
	02095228.tif
	02095229.tif
	02095230.tif
	02095231.tif
	02095232.tif
	02095233.tif
	02095234.tif
	02095235.tif
	02095236.tif
	02095237.tif
	02095238.tif
	02095239.tif
	02095240.tif
	02095241.tif
	02095242.tif
	02095243.tif
	02095244.tif
	02095245.tif
	02095246.tif
	02095247.tif
	02095248.tif
	02095249.tif
	02095250.tif
	02095251.tif
	02095252.tif
	02095253.tif
	02095254.tif
	02095255.tif
	02095256.tif
	02095257.tif
	02095258.tif
	02095259.tif
	02095260.tif
	02095261.tif
	02095262.tif
	02095263.tif
	02095264.tif
	02095265.tif
	02095266.tif
	02095267.tif
	02095268.tif
	02095269.tif
	02095270.tif
	02095271.tif
	02095272.tif
	02095273.tif
	02095274.tif
	02095275.tif
	02095276.tif
	02095277.tif
	02095278.tif
	02095279.tif
	02095280.tif
	02095281.tif
	02095282.tif
	02095283.tif
	02095284.tif
	02095285.tif
	02095286.tif
	02095287.tif
	02095288.tif
	02095289.tif
	02095290.tif
	02095291.tif
	02095292.tif
	02095293.tif
	02095294.tif
	02095295.tif
	02095296.tif
	02095297.tif
	02095298.tif
	02095299.tif
	02095300.tif
	02095301.tif
	02095302.tif
	02095303.tif
	02095304.tif
	02095305.tif
	02095306.tif
	02095307.tif
	02095308.tif
	02095309.tif
	02095310.tif
	02095311.tif
	02095312.tif
	02095313.tif
	02095314.tif
	02095315.tif
	02095316.tif
	02095317.tif
	02095318.tif
	02095319.tif
	02095320.tif
	02095321.tif
	02095322.tif
	02095323.tif
	02095324.tif
	02095325.tif
	02095326.tif
	02095327.tif
	02095328.tif
	02095329.tif
	02095330.tif
	02095331.tif
	02095332.tif
	02095333.tif
	02095334.tif
	02095335.tif
	02095336.tif
	02095337.tif
	02095338.tif
	02095339.tif
	02095340.tif
	02095341.tif
	02095342.tif
	02095343.tif
	02095344.tif
	02095345.tif
	02095346.tif
	02095347.tif
	02095348.tif
	02095349.tif
	02095350.tif
	02095351.tif
	02095352.tif
	02095353.tif
	02095354.tif
	02095355.tif
	02095356.tif
	02095357.tif
	02095358.tif
	02095359.tif
	02095360.tif
	02095361.tif
	02095362.tif
	02095363.tif
	02095364.tif
	02095365.tif
	02095366.tif
	02095367.tif
	02095368.tif
	02095369.tif
	02095370.tif
	02095371.tif
	02095372.tif
	02095373.tif
	02095374.tif
	02095375.tif
	02095376.tif
	02095377.tif
	02095378.tif
	02095379.tif
	02095380.tif
	02095381.tif
	02095382.tif
	02095383.tif
	02095384.tif
	02095385.tif
	02095386.tif
	02095387.tif
	02095388.tif
	02095389.tif
	02095390.tif
	02095391.tif
	02095392.tif
	02095393.tif
	02095394.tif
	02095395.tif
	02095396.tif
	02095397.tif
	02095398.tif
	02095399.tif
	02095400.tif
	02095401.tif
	02095402.tif
	02095403.tif
	02095404.tif
	02095405.tif
	02095406.tif
	02095407.tif
	02095408.tif
	02095409.tif
	02095410.tif
	02095411.tif
	02095412.tif
	02095413.tif
	02095414.tif
	02095415.tif
	02095416.tif
	02095417.tif
	02095418.tif
	02095419.tif
	02095420.tif
	02095421.tif
	02095422.tif
	02095423.tif
	02095424.tif
	02095425.tif
	02095426.tif
	02095427.tif
	02095428.tif
	02095429.tif
	02095430.tif
	02095431.tif
	02095432.tif
	02095433.tif
	02095434.tif

